Experimental Investigation of Convective Heat Transfer during Night Cooling with Different Ventilation Systems and Surface Emissivities

Research output: Contribution to journalJournal articleResearchpeer-review

22 Citations (Scopus)
1230 Downloads (Pure)

Abstract

Night-time ventilation is a promising approach to reduce the energy needed for cooling buildings without reducing thermal comfort. Nevertheless actual building simulation tools have showed their limits in predicting accurately the efficiency of night-time ventilation, mainly due to inappropriate models for convection. In a full-scale test room, the heat transfer was investigated during 12 h of discharge by night-time ventilation. A total of 34 experiments have been performed, with different ventilation types (mixing and displacement), air change rates, temperature differences between the inlet air and the room, and floor emissivities. This extensive experimental study enabled a detailed analysis of the convective and radiative flow at the different surfaces of the room. The experimentally derived convective heat transfer coefficients (CHTC) have been compared to existing correlations. For mixing ventilation, existing correlations did not predict accurately the convective heat transfer at the ceiling due to differences in the experimental conditions. But the use of local parameters of the air flow showed interesting results to obtain more adaptive CHTC correlations. For displacement ventilation, the convective heat transfer was well predicted by existing correlations. Nevertheless the change of floor emissivity influenced the CHTC at the surface of interest.
Original languageEnglish
JournalEnergy and Buildings
Volume61
Issue numberJune
Pages (from-to)308-317
Number of pages10
ISSN0378-7788
DOIs
Publication statusPublished - 2013

Keywords

  • Night-Time Ventilation
  • Full-Scale Experiments
  • Mixing Ventilation
  • Displacement Ventilation
  • Low-Emissivity
  • Radiation Pattern
  • Convective Heat Transfer Coefficient
  • Mixed Convection
  • Correlations
  • Local CHTC

Fingerprint Dive into the research topics of 'Experimental Investigation of Convective Heat Transfer during Night Cooling with Different Ventilation Systems and Surface Emissivities'. Together they form a unique fingerprint.

Cite this