Facilitating large-amplitude motions of wave energy converters in OpenFOAM by a modified mesh morphing approach

Johannes Palm, Claes Eskilsson

Research output: Contribution to journalConference article in JournalResearchpeer-review

Abstract

High-fidelity simulations using computational fluid dynamics (CFD) for wave-body interaction are becoming increasingly common and important for wave energy converter (WEC) design. The open source finite volume toolbox OpenFOAM® is one of the most frequently used platforms for wave energy. There are currently two ways to account for moving bodies in OpenFOAM: (i) mesh morphing, where mesh deforms around the body; and (ii) an overset mesh method where a separate body mesh moves on top of a background mesh. Mesh morphing is computationally efficient but may introduce highly deformed cells for combinations of large translational and rotational motion. The overset method allows for arbitrarily large body motions (in certain conditions) and retains the quality of the mesh. However, it comes with a substantial increase in computational cost and possible loss of energy conservation due to the interpolation. In this paper we present a straightforward extension of the spherical linear interpolation (SLERP) based mesh morphing algorithm that increase the stability range of the method. The mesh deformation is allowed to be interpolated independently for different modes of motion, which facilitates tailored mesh motion simulations. The paper details the implementation of the method and evaluates its performance with computational examples of a cylinder with a moonpool. The examples show that the modified mesh morphing approach handles large motions well and provides a cost effective alternative to overset mesh for survival conditions.
Original languageEnglish
JournalProceedings of the European Wave and Tidal Energy Conference
Pages (from-to)2107-1-2107-8
Number of pages8
ISSN2706-6932
Publication statusPublished - 2021
Event14th European Wave and Tidal Energy Conference - University of Plymouth, Virtual, Online, United Kingdom
Duration: 5 Sept 20219 Sept 2021
Conference number: 14
https://ewtec.org

Conference

Conference14th European Wave and Tidal Energy Conference
Number14
LocationUniversity of Plymouth
Country/TerritoryUnited Kingdom
CityVirtual, Online
Period05/09/202109/09/2021
Internet address

Bibliographical note

Publisher Copyright:
© European Wave and Tidal Energy Conference 2021.

Keywords

  • CFD
  • Extreme waves
  • OpenFOAM
  • Survival
  • Wave energy converter
  • Wave-body interaction

Fingerprint

Dive into the research topics of 'Facilitating large-amplitude motions of wave energy converters in OpenFOAM by a modified mesh morphing approach'. Together they form a unique fingerprint.

Cite this