Fault Detection and Diagnosis Methods for Fluid Power Pitch System Components – A Review

Magnus Færing Asmussen, Jesper Liniger, Henrik C. Pedersen

Research output: Contribution to journalReview articlepeer-review

6 Citations (Scopus)
58 Downloads (Pure)

Abstract

Wind turbines have become a significant part of the global power production and are still increasing in capacity. Pitch systems are an important part of modern wind turbines where they are used to apply aerodynamic braking for power regulation and emergency shutdowns. Studies have shown that the pitch system is responsible for up to 20% of the total down time of a wind turbine. Reducing the down time is an important factor for decreasing the total cost of energy of wind energy in order to make wind energy more competitive. Due to this, attention has come to condition monitoring and fault detection of such systems as an attempt to increase the reliability and availability, hereby the reducing the turbine downtime. Some methods for fault detection and condition monitoring of fluid power systems do exists, though not many are used in today’s pitch systems. This paper gives an overview of fault detection and condition monitoring methods of fluid power systems similar to fluid power pitch systems in wind turbines and discuss their applicability in relation to pitch systems. The purpose is to give an overview of which methods that exist and to find areas where new methods need to be developed or existing need to be modified. The paper goes through the most important components of a pitch system and discuss the existing methods related to each type of component. Furthermore, it is considered if existing methods can be used for fluid power pitch systems for wind turbine.
Original languageEnglish
Article number1305
JournalEnergies
Volume14
Issue number5
Number of pages15
ISSN1996-1073
DOIs
Publication statusPublished - 27 Feb 2021

Keywords

  • Condition monitoring
  • Fault detection
  • Fluid power
  • Wind turbines

Fingerprint

Dive into the research topics of 'Fault Detection and Diagnosis Methods for Fluid Power Pitch System Components – A Review'. Together they form a unique fingerprint.

Cite this