TY - JOUR
T1 - High resolution HLA genotyping with third generation sequencing technology-A multicentre study
AU - Buhler, Stéphane
AU - Nørgaard, Maja
AU - Steffensen, Rudi
AU - Kløve-Mogensen, Kirstine
AU - Møller, Bjarne Kuno
AU - Grossmann, Rebecca
AU - Ferrari-Lacraz, Sylvie
AU - Lehmann, Claudia
PY - 2024/8
Y1 - 2024/8
N2 - Molecular HLA typing techniques are currently undergoing a rapid evolution. While real-time PCR is established as the standard method in tissue typing laboratories regarding allocation of solid organs, next generation sequencing (NGS) for high-resolution HLA typing is becoming indispensable but is not yet suitable for deceased donors. By contrast, high-resolution typing is essential for stem cell transplantation and is increasingly required for questions relating to various disease associations. In this multicentre clinical study, the TGS technique using nanopore sequencing is investigated applying NanoTYPE™ kit and NanoTYPER™ software (Omixon Biocomputing Ltd., Budapest, Hungary) regarding the concordance of the results with NGS and its practicability in diagnostic laboratories. The results of 381 samples show a concordance of 99.58% for 11 HLA loci, HLA-A, -B, -C, -DRB1, -DRB3, -DRB4, -DRB5, -DQA1, -DQB1, -DPA1 and -DPB1. The quality control (QC) data shows a very high quality of the sequencing performed in each laboratory, 34,926 (97.15%) QC values were returned as ‘passed’, 862 (2.4%) as ‘inspect’ and 162 (0.45%) as ‘failed’. We show that an ‘inspect’ or ‘failed’ QC warning does not automatically lead to incorrect HLA typing. The advantages of nanopore sequencing are speed, flexibility, reusability of the flow cells and easy implementation in the laboratory. There are challenges, such as exon coverage and the handling of large amounts of data. Finally, nanopore sequencing presents potential for applications in basic research within the field of epigenetics and genomics and holds significance for clinical concerns.
AB - Molecular HLA typing techniques are currently undergoing a rapid evolution. While real-time PCR is established as the standard method in tissue typing laboratories regarding allocation of solid organs, next generation sequencing (NGS) for high-resolution HLA typing is becoming indispensable but is not yet suitable for deceased donors. By contrast, high-resolution typing is essential for stem cell transplantation and is increasingly required for questions relating to various disease associations. In this multicentre clinical study, the TGS technique using nanopore sequencing is investigated applying NanoTYPE™ kit and NanoTYPER™ software (Omixon Biocomputing Ltd., Budapest, Hungary) regarding the concordance of the results with NGS and its practicability in diagnostic laboratories. The results of 381 samples show a concordance of 99.58% for 11 HLA loci, HLA-A, -B, -C, -DRB1, -DRB3, -DRB4, -DRB5, -DQA1, -DQB1, -DPA1 and -DPB1. The quality control (QC) data shows a very high quality of the sequencing performed in each laboratory, 34,926 (97.15%) QC values were returned as ‘passed’, 862 (2.4%) as ‘inspect’ and 162 (0.45%) as ‘failed’. We show that an ‘inspect’ or ‘failed’ QC warning does not automatically lead to incorrect HLA typing. The advantages of nanopore sequencing are speed, flexibility, reusability of the flow cells and easy implementation in the laboratory. There are challenges, such as exon coverage and the handling of large amounts of data. Finally, nanopore sequencing presents potential for applications in basic research within the field of epigenetics and genomics and holds significance for clinical concerns.
KW - HLA-typing
KW - NanoTYPE
KW - deceased donor typing
KW - donor specific antibody determination
KW - high-resolution typing
KW - nanopore sequencing
KW - single sample HLA-typing
KW - third generation sequencing
UR - http://www.scopus.com/inward/record.url?scp=85201097328&partnerID=8YFLogxK
U2 - 10.1111/tan.15632
DO - 10.1111/tan.15632
M3 - Journal article
SN - 2059-2302
VL - 104
JO - HLA
JF - HLA
IS - 2
M1 - e15632
ER -