Identification of Individuals with Diabetes who are Eligible for Continuous Glucose Monitoring Forecasting  

Research output: Contribution to journalJournal articleResearchpeer-review

2 Citations (Scopus)
30 Downloads (Pure)

Abstract

Background and objectives: Predicting glucose levels in individuals with diabetes offers potential improvements in glucose control. However, not all patients exhibit predictable glucose dynamics, which may lead to ineffective treatment strategies. We sought to investigate the efficacy of a 7-day blinded screening test in identifying diabetes patients suitable for glucose forecasting. Methods: Participants with type 1 diabetes (T1D) were stratified into high and low initial error groups based on screening results (eligible and non-eligible). Long-term glucose predictions (30/60 min lead time) were evaluated among 334 individuals who underwent continuous glucose monitoring (CGM) over a total of 64,460,560 min. Results: A strong correlation was observed between screening accuracy and long-term mean absolute relative difference (MARD) (0.661–0.736; p < 0.001), suggesting significant predictability between screening and long-term errors. Group analysis revealed a notable reduction in predictions falling within zone D of the Clark Error Grid by a factor of three and in zone C by a factor of two. Conclusions: The identification of eligible patients for glucose prediction through screening represents a practical and effective strategy. Implementation of this approach could lead to a decrease in adverse glucose predictions.

Original languageEnglish
Article number102972
JournalDiabetes & Metabolic Syndrome: Clinical Research & Reviews
Volume18
Issue number2
ISSN1871-4021
DOIs
Publication statusPublished - 28 Feb 2024

Keywords

  • Continuous glucose monitoring
  • Ensemble learning
  • Forecasting
  • Glucose
  • Neural network
  • Prediction
  • Type 1 diabetes

Fingerprint

Dive into the research topics of 'Identification of Individuals with Diabetes who are Eligible for Continuous Glucose Monitoring Forecasting  '. Together they form a unique fingerprint.

Cite this