Improved perturb and observation maximum power point tracking technique for solar photovoltaic power generation systems

Premkumar Manoharan, Umashankar Subramaniam, Thanikanti Sudhakar Babu, Sanjeevikumar Padmanaban, Jens Bo Holm-Nielsen, Massimo Mitolo, Sowmya Ravichandran

Research output: Contribution to journalJournal articleResearchpeer-review

102 Citations (Scopus)
232 Downloads (Pure)

Abstract

The primary concerns in the practical photovoltaic (PV) system are the power reduction due to the change in operating conditions, such as the temperature or irradiance, the high computation burden due to the modern maximum power point tracking (MPPT) mechanisms, and to maximize the PV array output during the rapid change in weather conditions. The conventional perturb and observation (P&O) technique is preferred in most of the PV systems. Nevertheless, it undergoes false tracking of maximum power point (MPP) during the rapid change in solar insolation due to the wrong decision in the duty cycle. To avoid the computational burden and drift effect, this article presents a simple and enhanced P&O MPPT technique. The proposed technique is enhanced by including the change in current (dI), in addition to the changes in output voltage and output power of the PV module. The effect of including the dI profile with the traditional method is explained with the fixed and variable step-size methods. The mathematical expression for the drift-free condition is derived. The traditional boost converter is considered for validating the effectiveness of the proposed methods by employing the direct duty cycle technique. The proposed algorithm is simulated using MATLAB/Simulink and validated under various scenarios with the developed laboratory prototype in terms of drift-free characteristics and tracking efficiency. The result proves that the proposed technique can track the MPP accurately under various operating conditions.

Original languageEnglish
Article number9139517
JournalIEEE Systems Journal
Volume15
Issue number2
Pages (from-to)3024 - 3035
Number of pages12
ISSN1932-8184
DOIs
Publication statusPublished - Jun 2021

Bibliographical note

Publisher Copyright:
© 2020 IEEE.

Keywords

  • Adaptive perturb and observation (P&O)
  • Boost converter
  • Change in current
  • Direct duty cycle control
  • Drift effect
  • Maximum power point tracking (MPPT)

Fingerprint

Dive into the research topics of 'Improved perturb and observation maximum power point tracking technique for solar photovoltaic power generation systems'. Together they form a unique fingerprint.

Cite this