TY - ABST
T1 - In Search of Indoor Dense Regions: An Approach Using Indoor Positioning Data [Extended abstract]
AU - Li, Huan
AU - Lu, Hua
AU - Shou, Lidan
AU - Chen, Gang
AU - Chen, Ke
PY - 2019
Y1 - 2019
N2 - As people spend significant parts of daily lives indoors, it is useful and important to measure indoor densities and find the dense regions in many indoor scenarios like space management and security control. In this paper, we propose a data-driven approach that finds top-k indoor dense regions by using indoor positioning data. Such data is obtained by indoor positioning systems working at a relatively low frequency, and the reported locations in the data are discrete, from a preselected location set that does not continuously cover the entire indoor space. When a search is triggered, the object positioning information is already out-of-date and thus object locations are uncertain. To this end, we first integrate object location uncertainty into the definitions for counting objects in an indoor region and computing its density. Subsequently, we conduct a thorough analysis of the location uncertainty in the context of complex indoor topology, deriving upper and lower bounds of indoor region densities and introducing distance decaying effect into computing concrete indoor densities. Enabled by the uncertainty analysis outcomes, we design efficient search algorithms for solving the problem. Finally, we conduct extensive experimental studies on our proposals using synthetic and real data. The experimental results verify that the proposed search approach is efficient, scalable, and effective. The top-k indoor dense regions returned by our search are considerably consistent with ground truth, despite that the search uses neither historical data nor extra knowledge about objects.
AB - As people spend significant parts of daily lives indoors, it is useful and important to measure indoor densities and find the dense regions in many indoor scenarios like space management and security control. In this paper, we propose a data-driven approach that finds top-k indoor dense regions by using indoor positioning data. Such data is obtained by indoor positioning systems working at a relatively low frequency, and the reported locations in the data are discrete, from a preselected location set that does not continuously cover the entire indoor space. When a search is triggered, the object positioning information is already out-of-date and thus object locations are uncertain. To this end, we first integrate object location uncertainty into the definitions for counting objects in an indoor region and computing its density. Subsequently, we conduct a thorough analysis of the location uncertainty in the context of complex indoor topology, deriving upper and lower bounds of indoor region densities and introducing distance decaying effect into computing concrete indoor densities. Enabled by the uncertainty analysis outcomes, we design efficient search algorithms for solving the problem. Finally, we conduct extensive experimental studies on our proposals using synthetic and real data. The experimental results verify that the proposed search approach is efficient, scalable, and effective. The top-k indoor dense regions returned by our search are considerably consistent with ground truth, despite that the search uses neither historical data nor extra knowledge about objects.
KW - Density queries
KW - Indoor positioning data
KW - Indoor space
UR - http://www.scopus.com/inward/record.url?scp=85067938960&partnerID=8YFLogxK
U2 - 10.1109/ICDE.2019.00258
DO - 10.1109/ICDE.2019.00258
M3 - Conference abstract in proceeding
SN - 978-1-5386-7475-8
T3 - Proceedings of the International Conference on Data Engineering
SP - 2127
EP - 2128
BT - Proceedings of the 35th IEEE International Conference on Data Engineering (ICDE)
PB - IEEE (Institute of Electrical and Electronics Engineers)
T2 - 35th IEEE International Conference on Data Engineering, ICDE 2019
Y2 - 8 April 2019 through 11 April 2019
ER -