Mathematical formulation for mobile robot scheduling problem in a manufacturing cell.

Research output: Contribution to book/anthology/report/conference proceedingArticle in proceedingResearchpeer-review

4 Citations (Scopus)

Abstract

This paper deals with the problem of finding optimal feeding sequence in a manufacturing cell with feeders fed by a mobile robot with manipulation arm. The performance criterion is to minimize total traveling time of the robot in a given planning horizon. Besides, the robot has to be scheduled in order to keep production lines within the cell working without any shortage of parts fed from feeders. A mixed-integer programming (MIP) model is developed to find the optimal solution for the problem. In the MIP formulation, a method based on the (s, Q) inventory system is applied to define time windows for multiple-part feeding tasks. A case study is implemented at an impeller production line in a factory to demonstrate the result of the proposed MIP model.
Original languageEnglish
Title of host publicationAdvances in Production Management Systems : Value Networks: Innovation, Technologies, and Management IFIP AICT, 384.
EditorsJan Frick, Bjørge Timenes Laugen
Volume2012
PublisherSpringer
Publication date2012
Edition1
Pages37-44
ISBN (Print)978-3-642-33979-0
ISBN (Electronic)978-3-642-33980-6
DOIs
Publication statusPublished - 2012
EventIFIP WG 5.7 International Conference: Advances in Production Management Systems - Stavanger, Norway
Duration: 26 Sep 201128 Sep 2011

Conference

ConferenceIFIP WG 5.7 International Conference: Advances in Production Management Systems
CountryNorway
CityStavanger
Period26/09/201128/09/2011
SeriesIFIP AICT - Advances in Information and Communication technology
ISSN1868-4238

Cite this

Dang, V. Q., Nielsen, I. E., & Steger-Jensen, K. (2012). Mathematical formulation for mobile robot scheduling problem in a manufacturing cell. In J. Frick, & B. Timenes Laugen (Eds.), Advances in Production Management Systems: Value Networks: Innovation, Technologies, and Management IFIP AICT, 384. (1 ed., Vol. 2012, pp. 37-44). Springer. IFIP AICT - Advances in Information and Communication technology https://doi.org/10.1007/978-3-642-33980-6
Dang, Vinh Quang ; Nielsen, Izabela Ewa ; Steger-Jensen, Kenn. / Mathematical formulation for mobile robot scheduling problem in a manufacturing cell. Advances in Production Management Systems: Value Networks: Innovation, Technologies, and Management IFIP AICT, 384.. editor / Jan Frick ; Bjørge Timenes Laugen. Vol. 2012 1. ed. Springer, 2012. pp. 37-44 (IFIP AICT - Advances in Information and Communication technology).
@inproceedings{47cb47dee16d4448809be830f9f15b02,
title = "Mathematical formulation for mobile robot scheduling problem in a manufacturing cell.",
abstract = "This paper deals with the problem of finding optimal feeding sequence in a manufacturing cell with feeders fed by a mobile robot with manipulation arm. The performance criterion is to minimize total traveling time of the robot in a given planning horizon. Besides, the robot has to be scheduled in order to keep production lines within the cell working without any shortage of parts fed from feeders. A mixed-integer programming (MIP) model is developed to find the optimal solution for the problem. In the MIP formulation, a method based on the (s, Q) inventory system is applied to define time windows for multiple-part feeding tasks. A case study is implemented at an impeller production line in a factory to demonstrate the result of the proposed MIP model.",
author = "Dang, {Vinh Quang} and Nielsen, {Izabela Ewa} and Kenn Steger-Jensen",
year = "2012",
doi = "10.1007/978-3-642-33980-6",
language = "English",
isbn = "978-3-642-33979-0",
volume = "2012",
series = "IFIP AICT - Advances in Information and Communication technology",
publisher = "Springer",
pages = "37--44",
editor = "Jan Frick and {Timenes Laugen}, Bj{\o}rge",
booktitle = "Advances in Production Management Systems",
address = "Germany",
edition = "1",

}

Dang, VQ, Nielsen, IE & Steger-Jensen, K 2012, Mathematical formulation for mobile robot scheduling problem in a manufacturing cell. in J Frick & B Timenes Laugen (eds), Advances in Production Management Systems: Value Networks: Innovation, Technologies, and Management IFIP AICT, 384.. 1 edn, vol. 2012, Springer, IFIP AICT - Advances in Information and Communication technology, pp. 37-44, IFIP WG 5.7 International Conference: Advances in Production Management Systems , Stavanger, Norway, 26/09/2011. https://doi.org/10.1007/978-3-642-33980-6

Mathematical formulation for mobile robot scheduling problem in a manufacturing cell. / Dang, Vinh Quang; Nielsen, Izabela Ewa; Steger-Jensen, Kenn.

Advances in Production Management Systems: Value Networks: Innovation, Technologies, and Management IFIP AICT, 384.. ed. / Jan Frick; Bjørge Timenes Laugen. Vol. 2012 1. ed. Springer, 2012. p. 37-44 (IFIP AICT - Advances in Information and Communication technology).

Research output: Contribution to book/anthology/report/conference proceedingArticle in proceedingResearchpeer-review

TY - GEN

T1 - Mathematical formulation for mobile robot scheduling problem in a manufacturing cell.

AU - Dang, Vinh Quang

AU - Nielsen, Izabela Ewa

AU - Steger-Jensen, Kenn

PY - 2012

Y1 - 2012

N2 - This paper deals with the problem of finding optimal feeding sequence in a manufacturing cell with feeders fed by a mobile robot with manipulation arm. The performance criterion is to minimize total traveling time of the robot in a given planning horizon. Besides, the robot has to be scheduled in order to keep production lines within the cell working without any shortage of parts fed from feeders. A mixed-integer programming (MIP) model is developed to find the optimal solution for the problem. In the MIP formulation, a method based on the (s, Q) inventory system is applied to define time windows for multiple-part feeding tasks. A case study is implemented at an impeller production line in a factory to demonstrate the result of the proposed MIP model.

AB - This paper deals with the problem of finding optimal feeding sequence in a manufacturing cell with feeders fed by a mobile robot with manipulation arm. The performance criterion is to minimize total traveling time of the robot in a given planning horizon. Besides, the robot has to be scheduled in order to keep production lines within the cell working without any shortage of parts fed from feeders. A mixed-integer programming (MIP) model is developed to find the optimal solution for the problem. In the MIP formulation, a method based on the (s, Q) inventory system is applied to define time windows for multiple-part feeding tasks. A case study is implemented at an impeller production line in a factory to demonstrate the result of the proposed MIP model.

UR - http://www.scopus.com/inward/record.url?scp=84870669353&partnerID=8YFLogxK

U2 - 10.1007/978-3-642-33980-6

DO - 10.1007/978-3-642-33980-6

M3 - Article in proceeding

SN - 978-3-642-33979-0

VL - 2012

T3 - IFIP AICT - Advances in Information and Communication technology

SP - 37

EP - 44

BT - Advances in Production Management Systems

A2 - Frick, Jan

A2 - Timenes Laugen, Bjørge

PB - Springer

ER -

Dang VQ, Nielsen IE, Steger-Jensen K. Mathematical formulation for mobile robot scheduling problem in a manufacturing cell. In Frick J, Timenes Laugen B, editors, Advances in Production Management Systems: Value Networks: Innovation, Technologies, and Management IFIP AICT, 384.. 1 ed. Vol. 2012. Springer. 2012. p. 37-44. (IFIP AICT - Advances in Information and Communication technology). https://doi.org/10.1007/978-3-642-33980-6