MiR-130a, miR-203 and miR-205 jointly repress key oncogenic pathways and are downregulated in prostate carcinoma

K Boll, K Reiche, K Kasack, N Mörbt, A K Kretzschmar, J M Tomm, G Verhaegh, J Schalken, Martin von Bergen, F Horn, J Hackermüller

Research output: Contribution to journalJournal articleResearchpeer-review

198 Citations (Scopus)

Abstract

With ∼30 000 deaths annually in the United States, prostate cancer (PCa) is a major oncologic disease. Here we show that the microRNAs miR-130a, miR-203 and miR-205 jointly interfere with the two major oncogenic pathways in prostate carcinoma and are downregulated in cancer tissue. Using transcriptomics we show that the microRNAs repress several gene products known to be overexpressed in this cancer. Argonaute 2 (AGO2) co-immunoprecipitation, reporter assays and western blot analysis demonstrate that the microRNAs directly target several components of the mitogen-activated protein kinase (MAPK) and androgen receptor (AR) signaling pathways, among those several AR coregulators and HRAS (Harvey rat sarcoma viral oncogene homolog), and repress signaling activity. Both pathways are central for the development of the primary tumor and in particular the progression to its incurable castration-resistant form. Reconstitution of the microRNAs in LNCaP PCa cells induce morphological changes, which resemble the effect of androgen deprivation, and jointly impair tumor cell growth by induction of apoptosis and cell cycle arrest. We therefore propose that these microRNAs jointly act as tumor suppressors in prostate carcinoma and might interfere with progression to castration resistance.
Original languageEnglish
JournalOncogene
Volume32
Issue number3
Pages (from-to)277-85
Number of pages9
ISSN0950-9232
DOIs
Publication statusPublished - 17 Jan 2013
Externally publishedYes

Keywords

  • Apoptosis
  • Argonaute Proteins
  • Castration
  • Cell Cycle Checkpoints
  • Cell Line, Tumor
  • Cell Proliferation
  • Down-Regulation
  • Genes, Reporter
  • Humans
  • MAP Kinase Signaling System
  • Male
  • MicroRNAs
  • Oncogenes
  • Prostatic Neoplasms
  • Proto-Oncogene Proteins p21(ras)
  • Receptors, Androgen
  • Signal Transduction

Fingerprint

Dive into the research topics of 'MiR-130a, miR-203 and miR-205 jointly repress key oncogenic pathways and are downregulated in prostate carcinoma'. Together they form a unique fingerprint.

Cite this