Multi-objective control of a self-locking compact electro-hydraulic cylinder drive

Nikolaj Grønkær*, Lasse Nørby Nielsen, Frederik Ødum Nielsen, Søren Ketelsen, Lasse Schmidt

*Corresponding author for this work

Research output: Contribution to book/anthology/report/conference proceedingArticle in proceedingResearchpeer-review

Abstract

The field of self-contained linear hydraulic drives based on variable-speed electrical motors and fixed displacement pumps is gaining interest from both industry and academia. Some of the main reasons for this is the possibility to improve the energy efficiency of such drives compared to conventional valve controlled drives, and the possibility for electrical regeneration allowing power sharing between multiple drives. The main drawback for such types of drive concepts is a low pressure in the non-load carrying cylinder chamber. This induces a low drive stiffness limiting the achievable drive bandwidth and hence the application range. However, a so-called self-locking compact drive architecture recently proposed allow to maintain a proper drive stiffness by virtue of separate forward and return flow paths, combining the advantages of efficient flow control into the cylinder and a throttle driven flow out of the cylinder. The multiple inputs available in this architecture allows the control to target several objectives concurrently. The purpose of the study presented is to analyse the dynamic couplings between the control objectives via relative gain array (RGA) methods, and the realization of input- and output transformations effectively decoupling relevant dynamic interactions. These transformations allow the usage of simple SISO-controllers for each control objective, and a method for controlling motion and fluid temperature concurrently, is proposed and experimentally verified.
Original languageEnglish
Title of host publicationFluid Power, Hydraulics, Pneumatics, 12th International Fluid Power Conference
Number of pages12
Volume1
Place of PublicationDresden
PublisherDresdner Verein zur Förderung der Fluidtechnik e.V. Dresden
Publication date22 Jun 2020
Pages241-252
Article numberF-4
DOIs
Publication statusPublished - 22 Jun 2020
Event12th International Fluid Power Conference - Dresden, Germany
Duration: 12 Oct 202014 Oct 2020
https://ifk2020.com/

Conference

Conference12th International Fluid Power Conference
Country/TerritoryGermany
CityDresden
Period12/10/202014/10/2020
Internet address

Fingerprint

Dive into the research topics of 'Multi-objective control of a self-locking compact electro-hydraulic cylinder drive'. Together they form a unique fingerprint.

Cite this