Municipal Solid Waste-Based District Heating and Electricity Production: A Case Study

Alperen Tozlu, Aysegül Abusoglu, Emrah Ozahi, Amjad Anvari-Moghaddam

Research output: Contribution to journalJournal articleResearchpeer-review

12 Citations (Scopus)

Abstract

In this paper, municipal solid waste (MSW) based electricity production and district heating (DH) potential of Turkey are considered. Three MSW based waste-to-energy (WtE) scenarios is developed: (i) Scenario-I, a DH system integrated into a gas turbine power plant (GTPP), (ii) Scenario-II, a DH system integrated into an organic Rankine cycle (ORC), and (iii) Scenario-III, which is based solely on a DH system. As a result of the thermodynamic and thermoeconomic analyzes of these developed scenarios using an existing MSW-based cogeneration facility's actual operating data, the system with the most extended payback period (about 5 years) is found as the GTPP-DH system developed in Scenario-I, which also has the highest investment cost. On the other hand, the system with the shortest payback period (about 2 years) is found as the DH system developed in Scenario-III, which also has the lowest investment cost. Overall exergy efficiencies of the GTTP-DH, ORC-DH, and DH systems are found to be 41.86%, 16.15%, and 31.87%, respectively. When the developed WtE scenarios adapted to the pilot provinces selected from each geographical region of Turkey, it is found that the GTPP system developed in Scenario-I can increase the power generation capacity of MSW plants for each province by about 20%.
Original languageEnglish
Article number126495
JournalJournal of Cleaner Production
Volume297
Number of pages16
ISSN0959-6526
DOIs
Publication statusPublished - May 2021

Keywords

  • District heating
  • Municipal solid waste
  • Power production
  • Thermodynamic
  • Thermoeconomic

Fingerprint

Dive into the research topics of 'Municipal Solid Waste-Based District Heating and Electricity Production: A Case Study'. Together they form a unique fingerprint.

Cite this