Noise attenuation in a secondary controlled electro-hydraulic actuator using an extended kalman filter

Niklas Simonsen*, Emil Munk Sørensen, Mikkel van Binsbergen-Galan, Stine Flindt Hornemann Kleine, Mikkel Hvid Nielsen, Lasse Schmidt

*Corresponding author for this work

Research output: Contribution to book/anthology/report/conference proceedingArticle in proceedingResearchpeer-review

1 Citation (Scopus)

Abstract

Conventionally, variable-speed electro-hydraulic linear actuators utilize the speed control loops of electric machines and associated drives to control the pump flows, thereby realizing primary control functions. An alternative control approach is secondary control, which realizes a pressure coupling between the motor/pump and cylinder via the electromagnetic motor torque, with a flow reaction. Secondary controls in such drives has theoretically been shown to enable significantly higher control bandwidths compared to primary control approaches. The theoretical bandwidth improvement is possible as the secondary control approach utilizes the faster dynamics of the electric machine, whereas the primary control approach revolves about the slower hydraulic dynamics present in the speed control loop. This paper considers the design and implementation of a secondary control function in a variable-speed electro-hydraulic actuator test bench, in order to validate the properties of such controls. Initial results show that the proposed secondary control approach is highly sensitive to measurement noise, which proves to be a limiting factor for the achievable control bandwidth, if smooth operation of the system is to be maintained. To attenuate the noise impact an extended Kalman filter is proposed in conjunction with the secondary control approach. Results demonstrate that the inclusion of the extended Kalman filter significantly reduces the impact of signal noise on the internal drive states, thereby enabling increased bandwidth and expanding the application range for this control method.

Original languageEnglish
Title of host publicationProceedings of ASME/BATH 2021 Symposium on Fluid Power and Motion Control, FPMC 2021
Number of pages11
PublisherAmerican Society of Mechanical Engineers
Publication date2021
Article numberV001T01A018
ISBN (Electronic)978-0-7918-8523-9
DOIs
Publication statusPublished - 2021
EventASME/BATH 2021 Symposium on Fluid Power and Motion Control, FPMC 2021 - Virtual, Online
Duration: 19 Oct 202121 Oct 2021

Conference

ConferenceASME/BATH 2021 Symposium on Fluid Power and Motion Control, FPMC 2021
CityVirtual, Online
Period19/10/202121/10/2021
SponsorFluid Power Systems and Technology Division

Bibliographical note

Publisher Copyright:
Copyright © 2021 by ASME.All right reserved.

Fingerprint

Dive into the research topics of 'Noise attenuation in a secondary controlled electro-hydraulic actuator using an extended kalman filter'. Together they form a unique fingerprint.

Cite this