Nonlinear output feedback control of underwater vehicle propellers using feedback form estimated axial flow velocity

T.I. Fossen, M. Blanke

Research output: Contribution to journalJournal articleResearchpeer-review

124 Citations (Scopus)

Abstract

Accurate propeller shaft speed controllers can be designed by using nonlinear control theory and feedback from the axial water velocity in the propeller disc. In this paper, an output feedback controller is derived, reconstructing the axial flow velocity from vehicle speed measurements, using a three-state model of propeller shaft speed, forward (surge) speed of the vehicle, and the axial flow velocity. Lyapunov stability theory is used to prove that a nonlinear observer combined with an output feedback integral controller provide exponential stability. The output feedback controller compensates for variations in thrust due to time variations in advance speed. This is a major problem when applying conventional vehicle-propeller control systems, The proposed controller is simulated for an underwater vehicle equipped with a single propeller. The simulations demonstrate that the axial water velocity can be estimated with good accuracy. In addition, the output feedback integral controller shows superior performance and robustness compared to a conventional shaft speed controller.
Original languageEnglish
JournalIEEE Journal of Oceanic Engineering
Volume25
Issue number2
Pages (from-to)239-253
Number of pages14
ISSN0364-9059
Publication statusPublished - Apr 2000

Cite this