On Predictive Coding for Erasure Channels Using a Kalman Framework

Thomas Arildsen, Manohar Murthi, Søren Vang Andersen, Søren Holdt Jensen

Research output: Contribution to book/anthology/report/conference proceedingArticle in proceedingResearchpeer-review

182 Downloads (Pure)

Abstract

We present a new design method for robust low-delay coding of auto-regressive (AR) sources for transmission across erasure channels. The method is based on Linear Predictive Coding (LPC) with Kalman estimation at the decoder. The method designs the encoder and decoder off-line through an iterative algorithm based on minimization of the trace of the decoder state error covariance. The design method applies to stationary AR sources of any order. Simulation results show considerable performance gains, when the transmitted quantized prediction errors are subject to loss, in terms of Signal-to-Noise Ratio (SNR) compared to the same coding framework optimized for no loss. We furthermore investigate the impact on decoding performance when channel losses are correlated. We find that the method still provides substantial improvements in this case despite being designed for i.i.d. losses.
Original languageEnglish
Title of host publicationProceedings of the 17th European Signal Processing Conference (EUSIPCO-2009)
PublisherUniversity of Strathclyde
Publication date2009
Pages1646-1650
Publication statusPublished - 2009
EventEuropean Signal Processing Conference - Glasgow, United Kingdom
Duration: 24 Aug 200928 Aug 2009
Conference number: 17

Conference

ConferenceEuropean Signal Processing Conference
Number17
CountryUnited Kingdom
CityGlasgow
Period24/08/200928/08/2009
SeriesProceedings of the European Signal Processing Conference
ISSN2076-1465

Fingerprint

Decoding
Signal to noise ratio

Cite this

Arildsen, T., Murthi, M., Andersen, S. V., & Jensen, S. H. (2009). On Predictive Coding for Erasure Channels Using a Kalman Framework. In Proceedings of the 17th European Signal Processing Conference (EUSIPCO-2009) (pp. 1646-1650). University of Strathclyde. Proceedings of the European Signal Processing Conference
Arildsen, Thomas ; Murthi, Manohar ; Andersen, Søren Vang ; Jensen, Søren Holdt. / On Predictive Coding for Erasure Channels Using a Kalman Framework. Proceedings of the 17th European Signal Processing Conference (EUSIPCO-2009). University of Strathclyde, 2009. pp. 1646-1650 (Proceedings of the European Signal Processing Conference).
@inproceedings{c81d4760398111de8a17000ea68e967b,
title = "On Predictive Coding for Erasure Channels Using a Kalman Framework",
abstract = "We present a new design method for robust low-delay coding of auto-regressive (AR) sources for transmission across erasure channels. The method is based on Linear Predictive Coding (LPC) with Kalman estimation at the decoder. The method designs the encoder and decoder off-line through an iterative algorithm based on minimization of the trace of the decoder state error covariance. The design method applies to stationary AR sources of any order. Simulation results show considerable performance gains, when the transmitted quantized prediction errors are subject to loss, in terms of Signal-to-Noise Ratio (SNR) compared to the same coding framework optimized for no loss. We furthermore investigate the impact on decoding performance when channel losses are correlated. We find that the method still provides substantial improvements in this case despite being designed for i.i.d. losses.",
author = "Thomas Arildsen and Manohar Murthi and Andersen, {S{\o}ren Vang} and Jensen, {S{\o}ren Holdt}",
note = "Online proceedings",
year = "2009",
language = "English",
series = "Proceedings of the European Signal Processing Conference",
publisher = "University of Strathclyde",
pages = "1646--1650",
booktitle = "Proceedings of the 17th European Signal Processing Conference (EUSIPCO-2009)",

}

Arildsen, T, Murthi, M, Andersen, SV & Jensen, SH 2009, On Predictive Coding for Erasure Channels Using a Kalman Framework. in Proceedings of the 17th European Signal Processing Conference (EUSIPCO-2009). University of Strathclyde, Proceedings of the European Signal Processing Conference, pp. 1646-1650, Glasgow, United Kingdom, 24/08/2009.

On Predictive Coding for Erasure Channels Using a Kalman Framework. / Arildsen, Thomas; Murthi, Manohar; Andersen, Søren Vang; Jensen, Søren Holdt.

Proceedings of the 17th European Signal Processing Conference (EUSIPCO-2009). University of Strathclyde, 2009. p. 1646-1650 (Proceedings of the European Signal Processing Conference).

Research output: Contribution to book/anthology/report/conference proceedingArticle in proceedingResearchpeer-review

TY - GEN

T1 - On Predictive Coding for Erasure Channels Using a Kalman Framework

AU - Arildsen, Thomas

AU - Murthi, Manohar

AU - Andersen, Søren Vang

AU - Jensen, Søren Holdt

N1 - Online proceedings

PY - 2009

Y1 - 2009

N2 - We present a new design method for robust low-delay coding of auto-regressive (AR) sources for transmission across erasure channels. The method is based on Linear Predictive Coding (LPC) with Kalman estimation at the decoder. The method designs the encoder and decoder off-line through an iterative algorithm based on minimization of the trace of the decoder state error covariance. The design method applies to stationary AR sources of any order. Simulation results show considerable performance gains, when the transmitted quantized prediction errors are subject to loss, in terms of Signal-to-Noise Ratio (SNR) compared to the same coding framework optimized for no loss. We furthermore investigate the impact on decoding performance when channel losses are correlated. We find that the method still provides substantial improvements in this case despite being designed for i.i.d. losses.

AB - We present a new design method for robust low-delay coding of auto-regressive (AR) sources for transmission across erasure channels. The method is based on Linear Predictive Coding (LPC) with Kalman estimation at the decoder. The method designs the encoder and decoder off-line through an iterative algorithm based on minimization of the trace of the decoder state error covariance. The design method applies to stationary AR sources of any order. Simulation results show considerable performance gains, when the transmitted quantized prediction errors are subject to loss, in terms of Signal-to-Noise Ratio (SNR) compared to the same coding framework optimized for no loss. We furthermore investigate the impact on decoding performance when channel losses are correlated. We find that the method still provides substantial improvements in this case despite being designed for i.i.d. losses.

M3 - Article in proceeding

T3 - Proceedings of the European Signal Processing Conference

SP - 1646

EP - 1650

BT - Proceedings of the 17th European Signal Processing Conference (EUSIPCO-2009)

PB - University of Strathclyde

ER -

Arildsen T, Murthi M, Andersen SV, Jensen SH. On Predictive Coding for Erasure Channels Using a Kalman Framework. In Proceedings of the 17th European Signal Processing Conference (EUSIPCO-2009). University of Strathclyde. 2009. p. 1646-1650. (Proceedings of the European Signal Processing Conference).