On the Divergence and Vorticity of Vector Ambit Fields

Research output: Working paperResearch


This paper studies the asymptotic behavior of the flux and circulation of a subclass of random fields within the family of 2-dimensional vector ambit fields. We show that, under proper normalization, the flux and the circulation converge stably in distribution to certain stationary random fields that are defined as line integrals of a Lévy basis. A full description of the rates of convergence and the limiting fields is given in terms of the roughness of the background driving Lévy basis and the geometry of the ambit set involved. We further discuss the connection of our results with the classical Divergence and Vorticity Theorems. Finally, we introduce a class of models that are capable to reflect stationarity, isotropy and null divergence as key properties.
Original languageEnglish
Number of pages31
Publication statusPublished - 2018
Externally publishedYes
SeriesarXiv.org (e-prints)


Dive into the research topics of 'On the Divergence and Vorticity of Vector Ambit Fields'. Together they form a unique fingerprint.

Cite this