On the functional compartmentalization of the normal middle ear. Morpho-histological modelling parameters of its mucosa

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

Background: Middle ear physiology includes both sound pressure transmission and homeostasis of its static air pressure. Pressure gradients are continuously created by gas exchange over the middle ear mucosa as well as by ambient pressure variations. Gas exchange models require actual values for regional mucosa thickness, blood vessel density, and diffusion distance. Such quantitative data have been scarce and limited to few histological samples from the tympanic cavity (TC) and the antrum. However, a detailed regional description of the morphological differences of the TC and mastoid air cell system (MACS) mucosa has not been available. The aim of the present study was to provide such parameters. Methods: The study included sets of three histological H&E-slides from 15 archived healthy temporal bones. We performed a comparison of the mucosa morphology among the following regions: (1) anterior TC; (2) inferior TC; (3) posterior TC; (4) superior TC; (5) MACS antrum; (6) superior MACS; (7) central MACS; (8) inferior MACS. Results: Regions (1)–(3), situated below the inter-attico-tympanic diaphragm, had the largest proportion of high respiratory epithelium, cilia and loose lamina propria within the mucosa, as well as the thickest mucosa and the largest diffusion distance. Regions (6)–(8), situated above the diaphragm, had the thinnest mucosa, the shortest distance to the blood vessels, together with the largest proportion of flat epithelium and very few cilia. Regions (4)–(5), still supradiaphragmatic, had intermediary values for these parameters, but generally closer to regions (6)–(8). The blood vessel density and the proportion of active mucosa were not significantly different among the regions. Conclusion: Mucosa of regions (1), (2) and (3) represented a predominantly clearance-specific morphology, whereas in regions (4)–(8) it seemed adapted to gas exchange. However, the lack of statistically significant differences in blood vessel density and proportion of active mucosa indicated that all regions could be involved in gas exchange with the highest adaptation in the superior MACS. This pattern divides the middle ear functionally along the inter-attico-tympanic diaphragm rather than the anatomical division into TC and MACS.

Original languageEnglish
JournalHearing Research
Volume378
Pages (from-to)176-184
Number of pages9
ISSN0378-5955
DOIs
Publication statusPublished - Jul 2019

Fingerprint

Middle Ear
Mucous Membrane
Mastoid
Air
Blood Vessels
Diaphragm
Gases
Cilia
Pressure
Air Pressure
Respiratory Mucosa
Temporal Bone
Homeostasis
Epithelium

Cite this

@article{1c88fa44a3db41a8b17dc48f7fda0edb,
title = "On the functional compartmentalization of the normal middle ear. Morpho-histological modelling parameters of its mucosa",
abstract = "Background: Middle ear physiology includes both sound pressure transmission and homeostasis of its static air pressure. Pressure gradients are continuously created by gas exchange over the middle ear mucosa as well as by ambient pressure variations. Gas exchange models require actual values for regional mucosa thickness, blood vessel density, and diffusion distance. Such quantitative data have been scarce and limited to few histological samples from the tympanic cavity (TC) and the antrum. However, a detailed regional description of the morphological differences of the TC and mastoid air cell system (MACS) mucosa has not been available. The aim of the present study was to provide such parameters. Methods: The study included sets of three histological H&E-slides from 15 archived healthy temporal bones. We performed a comparison of the mucosa morphology among the following regions: (1) anterior TC; (2) inferior TC; (3) posterior TC; (4) superior TC; (5) MACS antrum; (6) superior MACS; (7) central MACS; (8) inferior MACS. Results: Regions (1)–(3), situated below the inter-attico-tympanic diaphragm, had the largest proportion of high respiratory epithelium, cilia and loose lamina propria within the mucosa, as well as the thickest mucosa and the largest diffusion distance. Regions (6)–(8), situated above the diaphragm, had the thinnest mucosa, the shortest distance to the blood vessels, together with the largest proportion of flat epithelium and very few cilia. Regions (4)–(5), still supradiaphragmatic, had intermediary values for these parameters, but generally closer to regions (6)–(8). The blood vessel density and the proportion of active mucosa were not significantly different among the regions. Conclusion: Mucosa of regions (1), (2) and (3) represented a predominantly clearance-specific morphology, whereas in regions (4)–(8) it seemed adapted to gas exchange. However, the lack of statistically significant differences in blood vessel density and proportion of active mucosa indicated that all regions could be involved in gas exchange with the highest adaptation in the superior MACS. This pattern divides the middle ear functionally along the inter-attico-tympanic diaphragm rather than the anatomical division into TC and MACS.",
author = "Simona Padurariu and Christof R{\"o}{\"o}sli and Rasmus R{\o}ge and Allan Stensballe and Mogens Vyberg and Alex Huber and Michael Gaihede",
note = "Copyright {\circledC} 2019 Elsevier B.V. All rights reserved.",
year = "2019",
month = "7",
doi = "10.1016/j.heares.2019.01.023",
language = "English",
volume = "378",
pages = "176--184",
journal = "Hearing Research",
issn = "0378-5955",
publisher = "Elsevier",

}

On the functional compartmentalization of the normal middle ear. Morpho-histological modelling parameters of its mucosa. / Padurariu, Simona; Röösli, Christof; Røge, Rasmus; Stensballe, Allan; Vyberg, Mogens; Huber, Alex; Gaihede, Michael.

In: Hearing Research, Vol. 378, 07.2019, p. 176-184.

Research output: Contribution to journalJournal articleResearchpeer-review

TY - JOUR

T1 - On the functional compartmentalization of the normal middle ear. Morpho-histological modelling parameters of its mucosa

AU - Padurariu, Simona

AU - Röösli, Christof

AU - Røge, Rasmus

AU - Stensballe, Allan

AU - Vyberg, Mogens

AU - Huber, Alex

AU - Gaihede, Michael

N1 - Copyright © 2019 Elsevier B.V. All rights reserved.

PY - 2019/7

Y1 - 2019/7

N2 - Background: Middle ear physiology includes both sound pressure transmission and homeostasis of its static air pressure. Pressure gradients are continuously created by gas exchange over the middle ear mucosa as well as by ambient pressure variations. Gas exchange models require actual values for regional mucosa thickness, blood vessel density, and diffusion distance. Such quantitative data have been scarce and limited to few histological samples from the tympanic cavity (TC) and the antrum. However, a detailed regional description of the morphological differences of the TC and mastoid air cell system (MACS) mucosa has not been available. The aim of the present study was to provide such parameters. Methods: The study included sets of three histological H&E-slides from 15 archived healthy temporal bones. We performed a comparison of the mucosa morphology among the following regions: (1) anterior TC; (2) inferior TC; (3) posterior TC; (4) superior TC; (5) MACS antrum; (6) superior MACS; (7) central MACS; (8) inferior MACS. Results: Regions (1)–(3), situated below the inter-attico-tympanic diaphragm, had the largest proportion of high respiratory epithelium, cilia and loose lamina propria within the mucosa, as well as the thickest mucosa and the largest diffusion distance. Regions (6)–(8), situated above the diaphragm, had the thinnest mucosa, the shortest distance to the blood vessels, together with the largest proportion of flat epithelium and very few cilia. Regions (4)–(5), still supradiaphragmatic, had intermediary values for these parameters, but generally closer to regions (6)–(8). The blood vessel density and the proportion of active mucosa were not significantly different among the regions. Conclusion: Mucosa of regions (1), (2) and (3) represented a predominantly clearance-specific morphology, whereas in regions (4)–(8) it seemed adapted to gas exchange. However, the lack of statistically significant differences in blood vessel density and proportion of active mucosa indicated that all regions could be involved in gas exchange with the highest adaptation in the superior MACS. This pattern divides the middle ear functionally along the inter-attico-tympanic diaphragm rather than the anatomical division into TC and MACS.

AB - Background: Middle ear physiology includes both sound pressure transmission and homeostasis of its static air pressure. Pressure gradients are continuously created by gas exchange over the middle ear mucosa as well as by ambient pressure variations. Gas exchange models require actual values for regional mucosa thickness, blood vessel density, and diffusion distance. Such quantitative data have been scarce and limited to few histological samples from the tympanic cavity (TC) and the antrum. However, a detailed regional description of the morphological differences of the TC and mastoid air cell system (MACS) mucosa has not been available. The aim of the present study was to provide such parameters. Methods: The study included sets of three histological H&E-slides from 15 archived healthy temporal bones. We performed a comparison of the mucosa morphology among the following regions: (1) anterior TC; (2) inferior TC; (3) posterior TC; (4) superior TC; (5) MACS antrum; (6) superior MACS; (7) central MACS; (8) inferior MACS. Results: Regions (1)–(3), situated below the inter-attico-tympanic diaphragm, had the largest proportion of high respiratory epithelium, cilia and loose lamina propria within the mucosa, as well as the thickest mucosa and the largest diffusion distance. Regions (6)–(8), situated above the diaphragm, had the thinnest mucosa, the shortest distance to the blood vessels, together with the largest proportion of flat epithelium and very few cilia. Regions (4)–(5), still supradiaphragmatic, had intermediary values for these parameters, but generally closer to regions (6)–(8). The blood vessel density and the proportion of active mucosa were not significantly different among the regions. Conclusion: Mucosa of regions (1), (2) and (3) represented a predominantly clearance-specific morphology, whereas in regions (4)–(8) it seemed adapted to gas exchange. However, the lack of statistically significant differences in blood vessel density and proportion of active mucosa indicated that all regions could be involved in gas exchange with the highest adaptation in the superior MACS. This pattern divides the middle ear functionally along the inter-attico-tympanic diaphragm rather than the anatomical division into TC and MACS.

UR - http://www.scopus.com/inward/record.url?scp=85062036329&partnerID=8YFLogxK

U2 - 10.1016/j.heares.2019.01.023

DO - 10.1016/j.heares.2019.01.023

M3 - Journal article

VL - 378

SP - 176

EP - 184

JO - Hearing Research

JF - Hearing Research

SN - 0378-5955

ER -