On Unified Formulation of Floquet Propagator in Cartesian and Polar Coordinates

A. Hvatov*, S. Sorokin

*Corresponding author for this work

Research output: Contribution to book/anthology/report/conference proceedingArticle in proceedingResearchpeer-review

1 Citation (Scopus)

Abstract

A modified formulation of Floquet propagator is proposed to analyze free wave motion in homogeneous and periodic waveguides both in the Cartesian and in the polar coordinates. For homogeneous waveguides, it substantiates the application of a Wave Finite Element Method in polar coordinates. For radially periodic waveguides, it facilitates the application of conventional (i.e., used in Cartesian coordinates) criterion to identify frequency-wise positions of pass- and stop-bands. The application of the proposed methodology is illustrated by a simple example of a wave propagation problem governed by the Helmholtz equation (a dilatation wave in a membrane).

Original languageEnglish
Title of host publicationRecent Trends in Wave Mechanics and Vibrations : Proceedings of WMVC 2022
EditorsZuzana Dimitrovová, Rodrigo Gonçalves, Zuzana Dimitrovová, Paritosh Biswas, Tiago Silva
Number of pages12
PublisherSpringer
Publication date2023
Pages713-724
ISBN (Print)978-3-031-15757-8, 978-3-031-15760-8
ISBN (Electronic)978-3-031-15758-5
DOIs
Publication statusPublished - 2023
Event10th International Conference on Wave Mechanics and Vibrations, WMVC 2022 - Lisbon, Portugal
Duration: 4 Jul 20226 Jul 2022

Conference

Conference10th International Conference on Wave Mechanics and Vibrations, WMVC 2022
Country/TerritoryPortugal
CityLisbon
Period04/07/202206/07/2022
SeriesMechanisms and Machine Science
Volume125 MMS
ISSN2211-0984

Bibliographical note

Publisher Copyright:
© 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

Keywords

  • Floquet propagator
  • Periodic structures
  • Polar coordinates
  • WFEM

Fingerprint

Dive into the research topics of 'On Unified Formulation of Floquet Propagator in Cartesian and Polar Coordinates'. Together they form a unique fingerprint.

Cite this