Parameter learning algorithms for continuous model improvement using operational data

Anders L. Madsen*, Nicolaj Søndberg Jeppesen, Frank Jensen, Mohamed S. Sayed, Ulrich Moser, Luis Neto, Joao Reis, Niels Lohse

*Corresponding author for this work

Research output: Contribution to book/anthology/report/conference proceedingArticle in proceedingResearchpeer-review

1 Citation (Scopus)
129 Downloads (Pure)
Original languageEnglish
Title of host publicationSymbolic and Quantitative Approaches to Reasoning with Uncertainty : 14th European Conference, ECSQARU 2017, Proceedings
Number of pages10
PublisherSpringer
Publication date2017
Pages115-124
ISBN (Print)978-3-319-61580-6
ISBN (Electronic)978-3-319-61581-3
DOIs
Publication statusPublished - 2017
Event14th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, ECSQARU 2017 - Lugano, Switzerland
Duration: 10 Jul 201714 Jul 2017

Conference

Conference14th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, ECSQARU 2017
Country/TerritorySwitzerland
CityLugano
Period10/07/201714/07/2017
SeriesLecture Notes In Artificial Intelligence
Number10369
ISSN0302-9743

Keywords

  • Bayesian networks
  • Parameter update
  • Practical application

Fingerprint

Dive into the research topics of 'Parameter learning algorithms for continuous model improvement using operational data'. Together they form a unique fingerprint.

Cite this