TY - JOUR
T1 - Process design, integration, and optimization of a novel compressed air energy storage for the coproduction of electricity, cooling, and water
AU - Alirahmi, Seyed Mojtaba
AU - Gundersen, Truls
AU - Arabkoohsar, Ahmad
AU - Klemeš, Jiří Jaromír
AU - Sin, Gürkan
AU - Yu, Haoshui
N1 - Publisher Copyright:
© 2023 The Authors
PY - 2024/1
Y1 - 2024/1
N2 - The use of fluctuating renewable energy over a certain threshold may lead to an unmanageable mismatch between the electricity generation and demand profiles threatening the grid's stability. In this study, an innovative complex energy storage/conversion system is proposed for the cogeneration of electricity, cooling, and water by integrating the liquefied natural gas (LNG) regasification process, an organic Rankine cycle, a compressed air energy storage (CAES) system, and a multi-effect distillation unit. The study attempts to minimize the CO2 emission from the CAES technology while addressing interruptions and reductions in the grid upon the extensive use of intermittent renewables. In addition, the proposed system uses excess power and waste heat during the charging and discharging of the CAES to regasify LNG and produce fresh water. The reference system performance is analyzed considering thermodynamic, economic, and environmental perspectives. The multi-objective grasshopper optimization algorithm is used to make a trade-off between the technical, economic, and environmental performance factors of the system. The results show an exergy efficiency of 50.6 % and a total cost rate of 322.8 $/h for the proposed system at the TOPSIS optimal point. The Grassmann diagram indicates the combustion chamber is the main source of irreversibility, and the Chord diagram revealed the discharge unit was responsible for more than 55 % of the total cost.
AB - The use of fluctuating renewable energy over a certain threshold may lead to an unmanageable mismatch between the electricity generation and demand profiles threatening the grid's stability. In this study, an innovative complex energy storage/conversion system is proposed for the cogeneration of electricity, cooling, and water by integrating the liquefied natural gas (LNG) regasification process, an organic Rankine cycle, a compressed air energy storage (CAES) system, and a multi-effect distillation unit. The study attempts to minimize the CO2 emission from the CAES technology while addressing interruptions and reductions in the grid upon the extensive use of intermittent renewables. In addition, the proposed system uses excess power and waste heat during the charging and discharging of the CAES to regasify LNG and produce fresh water. The reference system performance is analyzed considering thermodynamic, economic, and environmental perspectives. The multi-objective grasshopper optimization algorithm is used to make a trade-off between the technical, economic, and environmental performance factors of the system. The results show an exergy efficiency of 50.6 % and a total cost rate of 322.8 $/h for the proposed system at the TOPSIS optimal point. The Grassmann diagram indicates the combustion chamber is the main source of irreversibility, and the Chord diagram revealed the discharge unit was responsible for more than 55 % of the total cost.
KW - 4E analysis
KW - Energy and water
KW - Energy storage
KW - Multigeneration
KW - Process integration
KW - Renewable energy
UR - http://www.scopus.com/inward/record.url?scp=85175536483&partnerID=8YFLogxK
U2 - 10.1016/j.rser.2023.114034
DO - 10.1016/j.rser.2023.114034
M3 - Journal article
AN - SCOPUS:85175536483
SN - 1364-0321
VL - 189
JO - Renewable and Sustainable Energy Reviews
JF - Renewable and Sustainable Energy Reviews
M1 - 114034
ER -