Pronounced plastic and evolutionary responses to unpredictable thermal fluctuations in Drosophila simulans

Jesper Givskov Sørensen, Tommaso Manenti, Jesper Smærup Bechsgaard, Mads Fristrup Schou, Torsten Nygård Kristensen, Volker Loeschcke

Research output: Contribution to journalJournal articleResearchpeer-review

8 Citations (Scopus)
32 Downloads (Pure)

Abstract

Organisms are exposed to temperatures that vary, for example on diurnal and seasonal time scales. Thus, the ability to behaviorally and/or physiologically respond to variation in temperatures is a fundamental requirement for long-term persistence. Studies on thermal biology in ectotherms are typically performed under constant laboratory conditions, which differ markedly from the variation in temperature across time and space in nature. Here, we investigate evolutionary adaptation and environmentally induced plastic responses of Drosophila simulans to no fluctuations (constant), predictable fluctuations or unpredictable fluctuations in temperature. We whole-genome sequenced populations exposed to 20 generations of experimental evolution under the three thermal regimes and examined the proteome after short-term exposure to the same three regimes. We find that unpredictable fluctuations cause the strongest response at both genome and proteome levels. The loci showing evolutionary responses were generally unique to each thermal regime, but a minor overlap suggests either common laboratory adaptation or that some loci were involved in the adaptation to multiple thermal regimes. The evolutionary response, i.e., loci under selection, did not coincide with induced responses of the proteome. Thus, genes under selection in fluctuating thermal environments are distinct from genes important for the adaptive plastic response observed within a generation. This information is key to obtain a better understanding and prediction of the effects of future increases in both mean and variability of temperatures.

Original languageEnglish
Article number555843
JournalFrontiers in Genetics
Volume11
ISSN1664-8021
DOIs
Publication statusPublished - 2020

Keywords

  • Drosophila simulans
  • genomics
  • heat tolerance
  • proteomics
  • thermal fluctuations

Fingerprint

Dive into the research topics of 'Pronounced plastic and evolutionary responses to unpredictable thermal fluctuations in Drosophila simulans'. Together they form a unique fingerprint.

Cite this