Random Access for Machine-Type Communications

Israel Leyva-Mayorga*, Cedomir Stefanovic, Petar Popovski, Vicent Pla, Jorge Martinez-Bauset

*Corresponding author for this work

Research output: Contribution to book/anthology/report/conference proceedingBook chapterResearchpeer-review


The success of 5G wireless networks (5G) substantially relies on efficiently embracing machine-type communications (MTC), intended to support autonomous exchange of data between devices. Typical MTC applications include smart metering, e-health care, environmental and structural monitoring, and asset tracking. Therefore, MTC is an essential component of Smart Cities and the Internet of Things (IoT). However, cellular networks have traditionally been designed to efficiently handle human-to-human (H2H) traffic, whose characteristics greatly differ from those of MTC traffic. Only recently the cellular networks started to be optimized for MTC and, in that sense, a special focus has been put on the Random Access (RA), which occurs whenever a device requests initial access to a base station (BS). Specifically, the RA mechanism of cellular networks is based on the slotted ALOHA protocol, whose efficiency degrades rapidly as the number of users increases, also presenting a large signaling overhead when short packets are transmitted. The RA channels are further challenged by massive MTC (mMTC) applications, where a great number of MTC devices attempt to access the BS, while the class of MTC applications with strict latency requirements is challenged by the signaling overhead. These problems have been inherited from the H2H-oriented cellular systems and, while numerous solutions have been proposed, there is still no consensus on the MTC enhancements for the second phase of 5G standardization.
Original languageEnglish
Title of host publicationWiley 5G Ref : The Essential 5G reference Online
Number of pages21
Publication date29 Dec 2019
ISBN (Electronic)9781119471509
Publication statusPublished - 29 Dec 2019


Dive into the research topics of 'Random Access for Machine-Type Communications'. Together they form a unique fingerprint.

Cite this