Robust Estimation of the Carbon Dioxide Airborne Fraction Under Measurement Errors

J. Eduardo Vera-Valdés*, Charisios Grivas

*Corresponding author for this work

Research output: Working paper/PreprintPreprint

Abstract

This paper discusses the effect of measurement errors in the estimation of the carbon dioxide (CO2) airborne fraction. We are the first to present regression-based estimates and standard errors that are robust to measurement errors for the extended model, the preferred specification to estimate the CO2 airborne fraction. To achieve this goal, we add to the literature in three ways: i$ We generalise the Deming regression to handle multiple variables. ii) We introduce a bootstrap approach to construct confidence intervals for Deming regression in both univariate and multivariate scenarios. iii) Propose to estimate the airborne fraction using instrumental variables (IV), taking advantage of the variation of additional measurements, to obtain consistent estimates that are robust to measurement errors. IV estimates for the airborne fraction are 44.8%(± 1.4%) for the simple specification, and 47.3%(± 1.1%) for the extended specification. We show that these estimates are not statistically different from the ordinary least squares (OLS) estimates, while being robust to measurement errors without relying on additional assumptions. In contrast, OLS estimates are shown to fall outside the confidence interval of the Deming regression estimates.
Original languageEnglish
PublisherarXiv
Number of pages13
DOIs
Publication statusPublished - 13 Nov 2024

Keywords

  • CO2 airborne fraction
  • measurement errors
  • Deming regression
  • instrumental variables
  • Climate Econometrics

Fingerprint

Dive into the research topics of 'Robust Estimation of the Carbon Dioxide Airborne Fraction Under Measurement Errors'. Together they form a unique fingerprint.

Cite this