SemTex: A Hybrid Approach for Semantic Table Interpretation

Emil G. Henriksen, Alan M. Khorsid, Esben Nielsen, Adam M. Stück, Andreas S. Sørensen, Olivier Pelgrin

Research output: Contribution to journalConference article in JournalResearchpeer-review

8 Downloads (Pure)

Abstract

Accurate Semantic Table Interpretation (STI) annotation has a significant impact on interpreting unlabeled data for data analysis. In this paper, we present SemTex, a system for solving the three tasks Cell Entity Annotation (CEA), Cell Type Annotation (CTA) and Cell Property Annotation (CPA) in the Semantic Web Challenge on Tabular Data to Knowledge Graph Matching (SemTab). We utilise a hybrid approach combining analysis of relationships in knowledge graphs and gradient boosting for annotation. We document and benchmark our performance using datasets from the SemTab challenge 2022 and 2023. Our approach yields competitive results compared to the current state-of-the-art tools in all three tasks.

Original languageEnglish
JournalCEUR Workshop Proceedings
Volume3557
Pages (from-to)38-49
Number of pages12
ISSN1613-0073
Publication statusPublished - 2023
Event2023 Semantic Web Challenge on Tabular Data to Knowledge Graph Matching, SemTab 2023 - Athens, Greece
Duration: 6 Nov 202310 Nov 2023

Conference

Conference2023 Semantic Web Challenge on Tabular Data to Knowledge Graph Matching, SemTab 2023
Country/TerritoryGreece
CityAthens
Period06/11/202310/11/2023

Bibliographical note

Publisher Copyright:
© 2023 CEUR-WS. All rights reserved.

Keywords

  • Gradient Boosting
  • Knowledge Graph
  • Semantic Table Interpretation
  • SemTab Challenge
  • Tabular Data

Fingerprint

Dive into the research topics of 'SemTex: A Hybrid Approach for Semantic Table Interpretation'. Together they form a unique fingerprint.

Cite this