Projects per year
Abstract
The Sewer-ML dataset consists of 1.3 million images annotated by professional sewer inspectors from three different utility companies across nine years. Together with the dataset, we also present a benchmark algorithm and a novel metric for assessing performance. The benchmark algorithm is a result of evaluating 12 state-of-the-art algorithms, six from the sewer defect classification domain and six from the multi-label classification domain, and combining the best performing algorithms. The novel metric is a class-importance weighted F2 score, F2-CIW, reflecting the economic impact of each class, used together with the normal pipe F1 score, F1-Normal. The benchmark algorithm achieves an F2-CIW score of 55.11% and F1-Normal score of 90.94%, leaving ample room for improvement on the Sewer-ML dataset. The code, models, and dataset are available at the project page http://vap.aau.dk/sewer-ml
Original language | English |
---|---|
Title of host publication | 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) |
Number of pages | 12 |
Place of Publication | 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) |
Publisher | IEEE (Institute of Electrical and Electronics Engineers) |
Publication date | 2021 |
Pages | 13451-13462 |
Article number | 9577322 |
ISBN (Print) | 978-1-6654-4510-8 |
ISBN (Electronic) | 978-1-6654-4509-2 |
DOIs | |
Publication status | Published - 2021 |
Event | 2021 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) - Virtual, Nashville, United States Duration: 19 Jun 2021 → 25 Jun 2021 http://cvpr2021.thecvf.com/ |
Conference
Conference | 2021 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) |
---|---|
Location | Virtual |
Country/Territory | United States |
City | Nashville |
Period | 19/06/2021 → 25/06/2021 |
Internet address |
Series | I E E E Conference on Computer Vision and Pattern Recognition. Proceedings |
---|---|
ISSN | 1063-6919 |
Keywords
- Computer Vision
- Sewer Inspection
- Sewer Defect
- Multi-Label Classification
- Dataset
- Defect Classification
Fingerprint
Dive into the research topics of 'Sewer-ML: A Multi-Label Sewer Defect Classification Dataset and Benchmark'. Together they form a unique fingerprint.Projects
- 1 Finished
-
ASIR: ASIR: Autonomous Sewer Inspection Robot
Moeslund, T. B. (PI), Haurum, J. B. (PI), Bahnsen, C. H. (PI) & Hansen, B. D. (PI)
01/11/2018 → 30/04/2022
Project: Research
Impacts
-
Robots find defects in sewers
Moeslund, T. B. (Participant), Bahnsen, C. H. (Participant) & Haurum, J. B. (Participant)
Impact: Economic impact, Other impact
Press/Media
-
FORSKER I SPILDEVAND: Kontinuerlig inspektion af kloakrør kan spare forsyninger for et trecifret millionbeløb – om året
15/05/2022
1 item of Media coverage
Press/Media: Press / Media
-
Tv-inspektioner af kloakker kan automatiseres
15/03/2022
1 Media contribution
Press/Media: Press / Media
-
Data og algoritmer skal hjælpe med at vedligeholde vores kloakker
Haurum, J. B. & Moeslund, T. B.
21/06/2021
1 Media contribution
Press/Media: Press / Media
-
Multi-scale hybrid vision transformer and Sinkhorn tokenizer for sewer defect classification
Haurum, J. B., Madadi, M., Guerrero, S. E. & Moeslund, T. B., Dec 2022, In: Automation in Construction. 144, 104614.Research output: Contribution to journal › Journal article › Research › peer-review
Open AccessFile13 Citations (Scopus)377 Downloads (Pure) -
Multi-Task Classification of Sewer Pipe Defects and Properties using a Cross-Task Graph Neural Network Decoder
Haurum, J. B., Madadi, M., Guerrero, S. E. & Moeslund, T. B., 2022, Proceedings - 2022 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2022. IEEE (Institute of Electrical and Electronics Engineers), p. 1441-1452 12 p. (IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)).Research output: Contribution to book/anthology/report/conference proceeding › Article in proceeding › Research › peer-review
Open Access9 Citations (Scopus)
Datasets
-
Sewer-ML
Haurum, J. B. (Creator) & Moeslund, T. B. (Creator), sciencedata.dk, 18 Jun 2021
https://forms.gle/hBaPtoweZumZAi4u9 and one more link, https://vap.aau.dk/sewer-ml/ (show fewer)
Dataset