Sliding mode controller gain adaptation and chattering reduction techniques for DSP-based PM DC motor drives

Mehmet Dal, Remus Teodorescu

Research output: Contribution to journalJournal articleResearchpeer-review

20 Citations (Scopus)

Abstract

In order to achieve and maintain the prospective benefits of sliding mode control (SMC) methodology, the phenomenon known as “chattering”, the main obstacle encountered in real-time applications, has to be suppressed. In this study, two promising switching control gain adaptation and chattering reduction techniques are investigated, and the effectiveness of chattering suppression for current regulation of PM DC drives is tested. The sampling rate was also examined to determine how it affects the amplitude of chattering. This paper concentrates on various combinations of observer-based methods in order to find the best solution for chattering reduction. To find a practical solution a tunable low-pass filter (LPF) was used to average the discontinuous control term. The validity of the existing conditions for the gain adaptation methods are examined and observer gain value was determined through simulations. To demonstrate the effectiveness of each method, several experiments were performed on a DSP-based PM DC motor drive system. Then, the newly proposed combinations of these methods were implemented. The hardware implementation results are comparatively presented and discussed.
Original languageEnglish
JournalTurkish Journal of Electrical Engineering and Computer Sciences
Volume19
Issue number4
Pages (from-to)531-549
Number of pages19
ISSN1300-0632
DOIs
Publication statusPublished - 2011

Keywords

  • DC drives
  • Sliding mode control
  • Chattering reduction

Fingerprint

Dive into the research topics of 'Sliding mode controller gain adaptation and chattering reduction techniques for DSP-based PM DC motor drives'. Together they form a unique fingerprint.

Cite this