Abstract
Location-Based Services (LBS) are continuously gaining popularity. Innovative LBSes integrate knowledge about the users into the service. Such knowledge can be derived by analyzing the location data of users. Such data contain two unique dimensions, space and time, which need to be analyzed. The objectives of the presented thesis are three-fold. First, to extend popular data mining methods to the spatio-temporal domain. Second, to demonstrate the usefulness of the extended methods and the derived knowledge in promising LBS examples. Finally, to eliminate privacy concerns in connection with spatio-temporal data mining by devising systems for privacy-preserving location data collection and mining.
Original language | English |
---|---|
Publisher | |
Publication status | Published - 2008 |