The Potential of Circular Economy in Sustainable Buildings

Research output: Contribution to journalConference article in JournalResearchpeer-review

Abstract

The building industry contributes to resource scarcity by consuming vast amounts of natural resources and produces in addition large amounts of waste, both contributing to a considerable portion of the environmental impacts induced by the demands of a growing world population. Manufacturing of most building materials require large amounts of material and energy resources. These materials are nevertheless either down-cycled or ends up as waste after demolition. Consequently, the building industry only manages to exploit an insignificant percentage of the building materials' inherent economic value and durability. Hence, the need for improved resource efficiency will increase parallel to the growing human demands to ensure that future needs. Circular economy principles can potentially facilitate minimising the aforementioned pending issues emanating from the building industry through recirculation of building materials. E.g. existing mechanical joint solutions can enable design for disassembly, thereby potentially prolonging the service life of building materials and components through reuse in subsequent building projects. The research presented in the paper at hand aims at identifying the main challenges of implementing circular economy principles, as well as potentials here-off, within the building industry through a literature review. Furthermore, a conventional Danish office building is used as case study to support the literature review by quantifying potential environmental and economic benefits of designing the buildings concrete structure for disassembly, with the purpose of reuse, as well as to exemplify how circular economy can be applied in future building projects. Moreover, the paper aims at suggesting a more industry focused approach towards circular economy in order to seize the inherent potentials. As a result, it was found that recycling and energy recovery are the most common circular economy practices in the building industry, even though the economic and environmental benefits of reuse are believed to be much higher. This observation is supported by the findings of the case study, which revealed that reuse of the concrete structure can potentially avoid a noteworthy portion of the building's embodied CO2 emissions and provide a reasonable economic gain. Moreover, increased impact savings were exhibited when substituting concrete with alternative materials e.g. wood, steel and glass, thereby enabling easier disassembly for both reuse and recycling. However, main challenges preventing the industry from seizing these potentials are identified as: focus on short term goals, complex supply chains, lack of collaboration between stakeholders and absence of a commonly agreed definition of circular economy within the industry. In conclusion, the study demonstrates an improved environmental performance of the office building when designed for disassembly. Furthermore, the choice of building materials has a noteworthy influence on the building's embodied environmental impacts. From the results obtained in this study it is estimated that the potential environmental impact savings as well as economic benefits can be further increased through a higher degree of design for disassembly.
Original languageEnglish
Article number092051
JournalIOP Conference Series: Materials Science and Engineering
Volume471
Pages (from-to)1-10
Number of pages10
ISSN1757-8981
DOIs
Publication statusPublished - 2019
EventWorld Multidisciplinary Civil Engineering - Architecture - Urban Planning Symposium 2018 - Prague, Czech Republic
Duration: 18 Jun 201822 Jun 2018
Conference number: 3rd
https://wmcaus.org/

Conference

ConferenceWorld Multidisciplinary Civil Engineering - Architecture - Urban Planning Symposium 2018
Number3rd
CountryCzech Republic
CityPrague
Period18/06/201822/06/2018
Internet address

Fingerprint

Industry
Economics
Environmental impact
Office buildings
Concrete construction
Recycling
Seizing
Demolition
Steel
Natural resources
Energy resources
Service life
Supply chains
Wood
Durability
Concretes
Recovery
Glass
Ecodesign

Cite this

@inproceedings{fe98450c79bd4d46bf8eae4bb2510e08,
title = "The Potential of Circular Economy in Sustainable Buildings",
abstract = "The building industry contributes to resource scarcity by consuming vast amounts of natural resources and produces in addition large amounts of waste, both contributing to a considerable portion of the environmental impacts induced by the demands of a growing world population. Manufacturing of most building materials require large amounts of material and energy resources. These materials are nevertheless either down-cycled or ends up as waste after demolition. Consequently, the building industry only manages to exploit an insignificant percentage of the building materials' inherent economic value and durability. Hence, the need for improved resource efficiency will increase parallel to the growing human demands to ensure that future needs. Circular economy principles can potentially facilitate minimising the aforementioned pending issues emanating from the building industry through recirculation of building materials. E.g. existing mechanical joint solutions can enable design for disassembly, thereby potentially prolonging the service life of building materials and components through reuse in subsequent building projects. The research presented in the paper at hand aims at identifying the main challenges of implementing circular economy principles, as well as potentials here-off, within the building industry through a literature review. Furthermore, a conventional Danish office building is used as case study to support the literature review by quantifying potential environmental and economic benefits of designing the buildings concrete structure for disassembly, with the purpose of reuse, as well as to exemplify how circular economy can be applied in future building projects. Moreover, the paper aims at suggesting a more industry focused approach towards circular economy in order to seize the inherent potentials. As a result, it was found that recycling and energy recovery are the most common circular economy practices in the building industry, even though the economic and environmental benefits of reuse are believed to be much higher. This observation is supported by the findings of the case study, which revealed that reuse of the concrete structure can potentially avoid a noteworthy portion of the building's embodied CO2 emissions and provide a reasonable economic gain. Moreover, increased impact savings were exhibited when substituting concrete with alternative materials e.g. wood, steel and glass, thereby enabling easier disassembly for both reuse and recycling. However, main challenges preventing the industry from seizing these potentials are identified as: focus on short term goals, complex supply chains, lack of collaboration between stakeholders and absence of a commonly agreed definition of circular economy within the industry. In conclusion, the study demonstrates an improved environmental performance of the office building when designed for disassembly. Furthermore, the choice of building materials has a noteworthy influence on the building's embodied environmental impacts. From the results obtained in this study it is estimated that the potential environmental impact savings as well as economic benefits can be further increased through a higher degree of design for disassembly.",
author = "{Malabi Larsen}, {Leonora Charlotte} and Harpa Birgisdottir and Morten Birkved",
year = "2019",
doi = "10.1088/1757-899X/471/9/092051",
language = "English",
volume = "471",
pages = "1--10",
journal = "IOP Conference Series: Materials Science and Engineering",
issn = "1757-8981",
publisher = "IOP Publishing",

}

The Potential of Circular Economy in Sustainable Buildings. / Malabi Larsen, Leonora Charlotte; Birgisdottir, Harpa; Birkved, Morten.

In: IOP Conference Series: Materials Science and Engineering, Vol. 471, 092051, 2019, p. 1-10.

Research output: Contribution to journalConference article in JournalResearchpeer-review

TY - GEN

T1 - The Potential of Circular Economy in Sustainable Buildings

AU - Malabi Larsen, Leonora Charlotte

AU - Birgisdottir, Harpa

AU - Birkved, Morten

PY - 2019

Y1 - 2019

N2 - The building industry contributes to resource scarcity by consuming vast amounts of natural resources and produces in addition large amounts of waste, both contributing to a considerable portion of the environmental impacts induced by the demands of a growing world population. Manufacturing of most building materials require large amounts of material and energy resources. These materials are nevertheless either down-cycled or ends up as waste after demolition. Consequently, the building industry only manages to exploit an insignificant percentage of the building materials' inherent economic value and durability. Hence, the need for improved resource efficiency will increase parallel to the growing human demands to ensure that future needs. Circular economy principles can potentially facilitate minimising the aforementioned pending issues emanating from the building industry through recirculation of building materials. E.g. existing mechanical joint solutions can enable design for disassembly, thereby potentially prolonging the service life of building materials and components through reuse in subsequent building projects. The research presented in the paper at hand aims at identifying the main challenges of implementing circular economy principles, as well as potentials here-off, within the building industry through a literature review. Furthermore, a conventional Danish office building is used as case study to support the literature review by quantifying potential environmental and economic benefits of designing the buildings concrete structure for disassembly, with the purpose of reuse, as well as to exemplify how circular economy can be applied in future building projects. Moreover, the paper aims at suggesting a more industry focused approach towards circular economy in order to seize the inherent potentials. As a result, it was found that recycling and energy recovery are the most common circular economy practices in the building industry, even though the economic and environmental benefits of reuse are believed to be much higher. This observation is supported by the findings of the case study, which revealed that reuse of the concrete structure can potentially avoid a noteworthy portion of the building's embodied CO2 emissions and provide a reasonable economic gain. Moreover, increased impact savings were exhibited when substituting concrete with alternative materials e.g. wood, steel and glass, thereby enabling easier disassembly for both reuse and recycling. However, main challenges preventing the industry from seizing these potentials are identified as: focus on short term goals, complex supply chains, lack of collaboration between stakeholders and absence of a commonly agreed definition of circular economy within the industry. In conclusion, the study demonstrates an improved environmental performance of the office building when designed for disassembly. Furthermore, the choice of building materials has a noteworthy influence on the building's embodied environmental impacts. From the results obtained in this study it is estimated that the potential environmental impact savings as well as economic benefits can be further increased through a higher degree of design for disassembly.

AB - The building industry contributes to resource scarcity by consuming vast amounts of natural resources and produces in addition large amounts of waste, both contributing to a considerable portion of the environmental impacts induced by the demands of a growing world population. Manufacturing of most building materials require large amounts of material and energy resources. These materials are nevertheless either down-cycled or ends up as waste after demolition. Consequently, the building industry only manages to exploit an insignificant percentage of the building materials' inherent economic value and durability. Hence, the need for improved resource efficiency will increase parallel to the growing human demands to ensure that future needs. Circular economy principles can potentially facilitate minimising the aforementioned pending issues emanating from the building industry through recirculation of building materials. E.g. existing mechanical joint solutions can enable design for disassembly, thereby potentially prolonging the service life of building materials and components through reuse in subsequent building projects. The research presented in the paper at hand aims at identifying the main challenges of implementing circular economy principles, as well as potentials here-off, within the building industry through a literature review. Furthermore, a conventional Danish office building is used as case study to support the literature review by quantifying potential environmental and economic benefits of designing the buildings concrete structure for disassembly, with the purpose of reuse, as well as to exemplify how circular economy can be applied in future building projects. Moreover, the paper aims at suggesting a more industry focused approach towards circular economy in order to seize the inherent potentials. As a result, it was found that recycling and energy recovery are the most common circular economy practices in the building industry, even though the economic and environmental benefits of reuse are believed to be much higher. This observation is supported by the findings of the case study, which revealed that reuse of the concrete structure can potentially avoid a noteworthy portion of the building's embodied CO2 emissions and provide a reasonable economic gain. Moreover, increased impact savings were exhibited when substituting concrete with alternative materials e.g. wood, steel and glass, thereby enabling easier disassembly for both reuse and recycling. However, main challenges preventing the industry from seizing these potentials are identified as: focus on short term goals, complex supply chains, lack of collaboration between stakeholders and absence of a commonly agreed definition of circular economy within the industry. In conclusion, the study demonstrates an improved environmental performance of the office building when designed for disassembly. Furthermore, the choice of building materials has a noteworthy influence on the building's embodied environmental impacts. From the results obtained in this study it is estimated that the potential environmental impact savings as well as economic benefits can be further increased through a higher degree of design for disassembly.

UR - https://iopscience.iop.org/article/10.1088/1757-899X/471/9/092051/pdf

U2 - 10.1088/1757-899X/471/9/092051

DO - 10.1088/1757-899X/471/9/092051

M3 - Conference article in Journal

VL - 471

SP - 1

EP - 10

JO - IOP Conference Series: Materials Science and Engineering

JF - IOP Conference Series: Materials Science and Engineering

SN - 1757-8981

M1 - 092051

ER -