Abstract
The current research work deals with uncertainty quantification aspects in the problem of joint input-state estimation in structural dynamics. Specifically, it focuses on methodologies that can facilitate the tuning of the noise covariance matrices within the framework of Bayesian filtering techniques. These covariance matrices reflect the uncertainties of the estimation scheme and their proper calibration can reinforce the reliability of the estimated dynamic response. In this work, the performance of two approaches is investigated in the case of linear systems. First, a state-of-the-art methodology from the literature called Bayesian Expectation Maximization is implemented. The purpose of this optimization scheme is to identify the optimal noise covariance matrices based on the available observations of the dynamic response quantities. After evaluating the performance of this methodology, an adaptive time-varying noise Augmented Kalman Filter is proposed for updating the noise characteristics. The proposed scheme is expected to reduce the uncertainty of the input-state estimation. The two methods are applied on a 2D multi-story and multi-bay steel moment resisting frame subjected to earthquake-induced ground excitation. The performance of the different methods is evaluated and discussed.
Original language | English |
---|---|
Title of host publication | UNCECOMP 2023 : Proceedings of the 5th ECCOMAS Thematic Conference on Uncertainty Quantification in Computational Sciences and Engineering |
Editors | M. Papadrakakis, V. Papadopoulos, G. Stefanou |
Number of pages | 14 |
Publisher | European Community on Computational Methods in Applied Sciences |
Publication date | 2023 |
Pages | 11-24 |
ISBN (Electronic) | 978-618-5827-02-1 |
Publication status | Published - 2023 |
Event | 5th ECCOMAS Thematic Conference on Uncertainty Quantification in Computational Sciences and Engineering, UNCECOMP 2023 - Athens, Greece Duration: 12 Jun 2023 → 14 Jun 2023 |
Conference
Conference | 5th ECCOMAS Thematic Conference on Uncertainty Quantification in Computational Sciences and Engineering, UNCECOMP 2023 |
---|---|
Country/Territory | Greece |
City | Athens |
Period | 12/06/2023 → 14/06/2023 |
Bibliographical note
Publisher Copyright:© 2023 UNCECOMP Proceedings. All rights reserved.
Keywords
- Augmented Kalman Filter
- Input-state estimation
- MDOF systems
- Noise calibration
- Uncertainty quantification