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1. Introduction to Lecture Notes

The objective of this lecture notes is to establish mathematical model of
a spacecraft on a low earth orbit. The material presented in this notes is
used in the course Modeling of Mechanical Systems at Aalborg University,
Department of Control Engineering.

Motion of a spacecraft is described by a set of nonlinear ordinary differ-
ential equations. Its solution: angular momentum and the satellite orienta-
tion remain on some geometrical surface. This motion can be described with
respect to certain coordinate systems, which are fixed or revoluting in the
inertial frame. The spacecraft is considered as a rigid body which orientation
is corrected to a reference frame by a feedback system. The definition of the
coordinate systems used throughout this book are provided in Chapter 2.

The spacecraft motion can be divided into two parts: kinematics and
dynamics. The kinematics characterizes relation between satellite’s angular
velocity and its orientation in space, the attitude. The minimum number
of parameters locally identifying the attitude is three (Euler angles), how-
ever, four parameters are necessary for global attitude representation (a unit
quaternion). Various attitude representations for spacecraft application are
provided in Chapter 3.

The dynamics describes dependence between external torques and the
spacecraft’s angular velocity. The external torques are disturbances and a
control torque. The control torque originates from the interaction between
the Earth magnetic field and magnetic field generated in the magnetorquers.
The main disturbances are the gravity gradient torque, aerodynamic drag and
electromagnetic torque of the spacecraft’s electronics. The dynamic equations
of motion are provided in Chapter 5. The explicit formulas for kinetic and
potential energy of a LEO satellite are given in Chapter 6.
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2. Coordinate Systems

ORBITAL PLANE
Fig. 2.1. Local-Vertical-local-Horizontal Coordinate System (LVLH)

The motion of a spacecraft is related to four coordinate systems: Principal
Coordinate System (PCS), built on the spacecraft principal axes, a Spacecraft
Body Coordinate System (SCB) corresponding to the satellite structure, a
Local-Vertical-Local-Horizontal Coordinate System (LVLH) referring to the
current position of the satellite in orbit, and an Earth Centered Inertial Co-
ordinate System (SCI), an inertial frame with the origin in the Earth’s center
of mass. The formal definitions of these coordinate systems are

— Principal Coordinate System (PCS) is a right orthogonal coordinate
system built on the Spacecraft’s principal axes with the origin placed in the
center of mass. The y axis is the axis of the maximum moment of inertia,
the x axis is the intermediate, and the z axis is the minimum (I, > I > I,).
A vector v resolved in PCS is denoted by vp,.

— Spacecraft Body Coordinate System (SCB) is a right orthogonal
coordinate system fixed in the spacecraft structure with the origin in the
center of mass. It defines the orientation of attitude determination and
control hardware (attitude sensors and actuators). A vector v resolved in
PCS is denoted by vy,.-
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— Local-Vertical-Local-Horizontal Coordinate System (LVLH) is a
right orthogonal coordinate system with the origin at the spacecraft’s cen-
ter of mass. The z axis (local vertical) is parallel to the radius vector and
points from the spacecraft center of mass to the center of the Earth . The
positive y axis is pointed in the direction of the negative angular momen-
tum vector. The x axis (local horizontal) completes the right orthogonal
coordinate system. The positive x axis lies in the orbital plane in the direc-
tion of the velocity vector (only identical to the velocity vector for perfectly
circular orbits), Fig. 2.1. A vector v resolved in LVLH is denoted by v,.

— Earth Centered Inertial Coordinate System (ECI) is the frame with
the origin in the Earth’s center. The z axis is parallel to the rotation axis of
the Earth and points towards the North Pole. The x axis is parallel to the
line connecting the center of the Earth with Vernal Equinox and points
towards Vernal Equinox (Vernal Equinox is the point where the ecliptic
crosses the Earth equator going from South to North on the first day of
spring), Fig. 2.2. A vector v resolved in ECI is denoted by wv;.

ZEC]
I EARTH'S MEAN ROTATIONAL AXIS

-~

N
CENTER OF EAR Y
ECI

MEAN EQUATOR

X ECI

MEAN VERNAL o
EQUINDX <

Fig. 2.2. Earth Centered Coordinate System (ECI)

3. Attitude Representations

The fundamental problem of the attitude representation is to specify an ori-
entation of a coordinate system fixed in a spacecraft {s} with respect to
a reference coordinates {r}. The orientation can be parameterized by sev-
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eral methods: a rotation matrix, a unit quaternion, Euler angles. The most
natural attitude description is given by the rotation matrix, which is com-
posed of a unit vectors of {s} projected on {r}. This representation uses nine
components with 6 constrains, thus the attitude can be locally specified by
three parameters. The Euler angles seems to be most physically appealing
three parameter representation of attitude. The minimum number of param-
eters necessary to give a global representation is four. For this purpose a unit
quaternion can be used, which consists of four components with an amplitude
constraint.

3.1 Rotation Matrix

Consider a triad of unit vectors spanning the coordinate system {r}, and call
them 4., j;, and k.. The relations between these vector are

iy X jr = ky, Jr x k=4, and k; X 2, = J,. (3.1)

The basic problem is now to describe the orientation of this triad relative

k .
IZ Jr

X

S

Fig. 3.1. The basic problem of attitude representation is to describe the orientation
of the triad 4., j., k: relative the coordinate system {s}.

the coordinate system {s}. This orientation is characterized completely by
specifying the components of i, jr, and k, along the x, y and z axes of {s},
see Fig. 3.1

irx jI‘X er
(":r)s = iry s (jr)s = jry s (kr)s = kry . (32)
irz jrz krz

Any vector v in {r} is a linear combination of the triad i,, jr, k:
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Ur = Ux & + Vy Jr + 0 kr. (3.3)

Since the components of the triad along the axes of {s} are known the vector
v in {s}is

Vs = Ux (ir)s + vy (jr)s + Vg (kr)s = [(":r)s (jr)s (kr)s] Ur. (3.4)

The 3 by 3 matrix A = [(4:); (ji)s (K:)s] is called the rotation matrix. It
maps vectors from the coordinate system {r} to {s}. To suppress the notation
the vectors (i:)g, (Jr)s, (ki) will be denoted by %, jr, k.. Actually the
projection on the {s} coordinates is the only interesting one, since (%),
(Jr),» (Kr), is trivial.

There are six constraints imposed on the rotation matrix A. The first
three comes from the fact the the length of vectors 4., j., k. is one. The
remaining three are due to mutual orthogonality of the triad, Eq. (3.1). These
constraints in the language of the matrix product can be summarized in
equation

AAT = ATA =E. (3.5)

It means that the inverse of a rotation matrix is given by its transposition.

3.2 Algebraic Properties of Rotation Matrix

A real square matrix A is called orthogonal if AT = A~!, that the rotation
matrix is a real orthogonal 3 by 3 matrix. It is well known from the linear
algebra that if A is an n by n orthogonal matrix, then

1. for any column n-vector v, || Av ||=|| v ||,
2. for any n-vectors v and w, {(Av, Aw) = (v, w), where ( , ) denotes the
inner product in R™.

The first part of the statement follows from the second. The second can be
shown using the definition of the inner product in R™

(Av, Aw) = (Av)TAw = vTATAw = vTw = (v, w) (3.6)

Part 1. says that applying an orthogonal matrix to a vector does not change
its length (it just rotates it about the origin). The part 2. says that the
angles between vectors does not change when an orthogonal matrix is applied.
Therefore, if A denotes a 3 by 3 orthogonal matrix (rotation matrix) and v, w
are a 3-vectors the following rule for calculation of vector products follows

(Av) x (Aw) = A(v X w) (3.7

In general every orthogonal matrix has determinant 1 or -1, since for an
orthogonal matrix A
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(det(A) det(A))? = det(A) det(AT) = det(AAT) = det(1) = 1 (3.8)

The rotation matrix A is an 3 by 3 orthogonal matrix with determinant equal
to 1

det A = (ir, (jr X k) = 1, (3.9)

since the triad ., j., k; defines the right orthogonal coordinate system.

The final but very important remark is that the rotation matrices form
a group. The binary operation is the same as the matrix multiplication, the
identity is the identity matrix, and the inverse complies with the matrix
inverse. The group of the rotation matrices, i.e. the orthogonal matrices with
determinant 1 is called special orthogonal group SO3(R). The number three
stands for 3 by 3, and R for real matrices.

3.3 Attitude Parameterization by Quternion

Rotation of coordinate systems can be described by means of a unit quater-
nion. A salient feature of the unit quaternions is that they provide a conve-
nient product rule for successive rotations and a simple form of kinematics.
Before a definition of a unit quaternion and its physical interpretation will
be given, notion of a quaternion will be introduced.

Consider a four dimensional Euclidean space, E*, with the usual definition

of the scalar product of v and w, (v, w) = vTw, and the norm || v ||= (v, v) 3

Furthermore, let e denote a unit vector in E*, and let E be an orthogonal
complement to the vector space spanned by e. Now, any vector ¢ in E* can
be uniquely expressed as

g =qoe+gq, (3.10)

where ¢o € R, and q € E.

[E is three dimensional and every vector can be represented as a linear com-
bination of the triad of mutually perpendicular unit vectors %, 7, k. Therefore,
an element of E! is given by

q=qoe + @it + ¢2J + gzk. (3.11)

Now a definition from (Jurdjevic 1997) of a quaternion can be adopted.
Quaternions are elements of E* endowed with the vector structure of E* and
the multiplication

G5 = (qoso — (q,8))e + qs + sog +q x s (3.12)

for any g = goe +q and § = spe + s
Notice that
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ge = eq, (3.13)

therefore e is the multiplicative identity in the space of quaternions. The
conjugate of quaternion ¢* is

i =qe—q (3.14)
The following properties of quaternions are very useful
(@+38) =g +s" (3.15)

conjugate of the sum of two quaternions is the sum of their conjugates,

(g3)" =35"¢q" (3.16)
conjugate of the product of two quaternions is the product of their conjugates,
44" = (i+ l a[")e (3.17)

product of a quaternion and its conjugate is e multiplied by its length,

g5 l=[lgIlll 5 (3.18)
norm of the product of two quaternions is the product of their norms,

~—1 1 ~%

Tar? (319
The inverse of the quaternion is its conjugate divided by the square of its
length.

Any complex number z+iy can be represented as a quaternion § = xe+yi,
where x is the scalar part of ¢, and y1 is the vector part. Actually whole triad
1, J, k can be identified with quaternions having zero scalar part. The mutual
orthogonality and unit length of the triad imply the following quaternion
product

ij=k, jk=14, ki=j (3.20)
and
i2 = —§€, j2 = —¢, k2 = —e. (321)

A salient feature of the quaternion space is that it provides common frame-
work for representing the vectors of the three dimensional Euclidean space
(for which the scalar part is zero) and the scalars (for which the vector part
is zero).

The property in Eq. (3.19), says that the inverse of a quaternion is equal
to its conjugate divided by the length. If all the quaternions are limited to
those with unit length, the inverse is exactly equal to the conjugate. The unit
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quaternions (quaternions with unit length) can be interpreted geometrically
as a sphere in E*

={a:lql=1}, (3.22)

and algebraicly as a group with the binary operation of quaternion product
and the identity element equal to e.

In the last part of this subsection we will pay closer attention to a
representation of a rotation by a unit quaternion. Consider a mapping
A :S? - S03(R)

A(g)(z) = q=q", (3.23)

where x is quaternion representation of a vector in R3. To check that A(q)
is rotation matrix, it is necessary to check that it preserves the lengths of
transforming vectors

1 A@) () I=[l g=g™ [I=[l g llll = llll @ [|=[ (3.24)

and that the orientation is preserved

Ad)@xy) = A@(ey+(@y)e) = ey + (@) )"
= A@@AQ)®) +(A@) (@) A ) e
= A@)(2) x A@)(y) (3.25)

In the equation above & and y are both vectors in the three dimensional
Euclidean space and quaternions with zero scalar parts.

The mapping of the identity quaternion e by A(-) gives the identity ma-
trix, but this is not the only quaternion which maps to identity matrix, since
both A(e)(xz) =  and A(—e)(x) = x. Therefore, the mapping A(g) is a ho-
momorphism, with the kernel consisting of {—e, e}. Now, S? is a double cover
of SO3(R), two elements of S3, § and —@ give the same element of SO3(R),
A(@). A(q) is a real orthogonal matrix, therefore, a notation A(q)x (the prod-
uct of a matrix by a compatible vector), instead of A(q)(x), is adopted in the
sequel as it is more natural.

3.4 Unit Quaternion as Rotation Representation

The construction of the unit quaternion arises from the Euler’s theorem that
the general displacement of a rigid body with one point fixed is a rotation
about some axis. Furthermore, the real orthogonal matrix (rotation matrix)
always has an eigenvalue +1. The eigenvector corresponding to this eigen-
value is the axis of rotation. Thus, the rotation of coordinate systems can
be uniquely described by a unit vector, € = [e1 €2 63]T, giving an axis of
rotation, and an angle of rotation ¢.
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A unit quaternion, g can be interpreted as a combination of the compo-
nents of the unit vector and the angle of rotation

dgo = COs g
qgq = € sin g
= esin®
¢ = esng (3.26)
g3 = €3 sin %

As mentioned, the same attitude can be described by two different unit
quaternions q and —q, the first is given for the angle of rotation ¢, and
the latter for the angle 27 + ¢.

The product of quaternions in Eq. (3.12) provides a simple methods for
calculation of successive rotations. Consider three coordinate systems fixed
in a spacecraft {s}, a reference {r} and inertial {i} coordinate systems. Let
the quaternions specifying orientation of {s} in {r} and {r} in {i} be G and
I'q respectively then the rotation of {s} in the coordinate system {i} is

4 = 14iq. (3.27)

It is sometimes more convenient to use the quaternion product in a matrix
notation

:q = R(;9)iq, (3.28)
where
—q —¢@ —Q92 g3
~ —q1 Qo g3 —q2
R = 3.29
(q) g2 —4q3 Qo q1 ( )
g3 g2 —q1 qo0

The following equalities involving mapping R are true
R(@)R"(4) = R"(@)R(q) = " GE. (3.30)

The relation between the unit quaternion and the rotation matrix was
already discussed in Eq. (3.23). The construction of the rotation matrix from
the coordinate system {r} to {s} was provided in Eq. (3.4)

A= |: i Jr ke :|; (3.31)

where ., j. , k¢, see Fig. 3.1, are the unit vectors of the x, y, and z axes
of {r} projected on the coordinates of {s}. Now, the triad of the unit vec-
tors can be parameterized by the unit quaternion, }q, and represented in a
straightforward form
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. T

& = [@+E3 -G -3 20— Bw) 20 +ae) |,

. T

i = [2@e+sn) @-d+3 -G 2@ - aw) | 5(3.32)
T

k: = [ 2laes — ©290) 2(@@z+@1d) @ -G -3+ ]

In the last part of this subsection the formulas for successive rotations will
be provided. Having matrix representation of the unit quaternion, successive
rotations can be described by the following equation

A= AGE = ACDACEH) = SAIA. (3.33)
Frequently, it is necessary to use the inverse transformation of a rotation, It

is given by the conjugate of the unit quaternion 2§ = :g*, Eq. (3.19) and
the transpose of a rotation matrix $A = AT Eq (3.5).

3.5 Euler Angles

Yr

.
X},v X

Fig. 3.2. The full description of an attitude can be given by three Euler angles.
The sequence used is started by rotating the initial coordinate system {r} about
the z; axis by an angle ¢.

One can carry out transformation from the coordinate system {r} to {s}
by means of successive rotations performed in a specific sequence. The full
description of this orientation can be given by three counterclockwise angles,
known as Euler angles. The convention employed here conforms with (Wertz
1990). The sequence used is started by rotating the initial coordinate system,
{r} about the z axis by an angle ¢. The resultant coordinate system is
spanned on the z’, y’, and 2’ axes, see Fig. 3.2. This coordinate system is
denoted by {r'}. The axes 2z, of {r} and 2’ of {r'} coincide. In the second
step the coordinate system {r'} is rotated about the z' axis by an angle 6 in
Fig. 3.3, and the resultant coordinates are labeled z”, y”, 2" and the frame
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’

X'=><'

Fig. 3.3. In the second step the coordinate system {r'} spanned on the z’, 3/, 2/
axes is rotated about the z’ axis by an angle 4.

Fig. 3.4. In the third and last stage {r"’} spanned on the =", 3", 2" axes is rotated
about " axis by an angle 1.
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is denoted by {r"}. Now, the z' axis of {r'} and z’ of {r"} coincide. Finally
{r"} is rotated about y" axis by an angle 1, see Fig 3.2. The result is the
desired coordinate system {s}. The angles ¢, 6, 1) are often referred to as
pitch, roll, and yaw, respectively,

The matrix describing rotation from {r} to {s} is a product of successive
rotations about z axis of {r}, x’ of {r'}, and y” of {r"'}

SA = S,ALATA. (3.34)

The matrix §'A represents rotation about 2z, axis by ¢ and it is equal to

, cos¢p sing 0
"A=|-sing cos¢ 0]. (3.35)
0 0 1

Notice that the last row is [0 0 1], which means that the rotation does
not change the third axis. The remaining two rotation matrices are

, 1 0 0 cosyp 0 —siny
YA=|0 cosf sinf|,anddA=| 0 1 0 . (3.36)
0 —sinf cosé singy 0 cose

Finally the multiplication of the aforementioned matrices gives

cosypcos¢p —sinfsinysing cossin @ + sinfciny cosp — cosBsiny

A = — cosfsin ¢ cosf cos ¢ sin
siny cos¢ + sinfcosysing sinysing —sinfcosycos¢p  cosf cosp
(3.37)

4. Kinematics of Rigid Body

Three types of the attitude parameterization were discussed in the last sec-
tion: the rotation matrix, unit quaternion, three Euler angles. The orientation
of a spacecraft changes as time progresses. This changes are dependent on
the angular velocity of the vehicle. A mathematical description of the rela-
tion between the body’s orientation in space and its angular velocity com-
prises kinematics. The focus is put on kinematics for rotation matrix and unit
quaternion in this section. The import feature of these representations is that
both of them give singularity-free kinematics. The solution trajectories live
on differential manifolds: in the case of rotation matrix the trajectory is on
SO3(R), in the case of unit quaternion on S3. The kinematics parameterized
by Euler angles can be viewed as a local projection on R® of the vector fields
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describing the ordinary differential equations of quaternionic (or given by the
rotation matrix) kinematics. In this book Euler angles (pitch, roll, and yaw)
are only use for interpretation of control results, and another local projection
IT:S® = R? is used

(@) = q = @i + g25 + g3k (4.1)

Description of kinematics parameterized by Euler parameters can be found
for instance in (Wertz 1990).

4.1 Kinematics Parameterized by Rotation Matrix

Consider rotation of the coordinate system {s} in {r}. At time ¢ {s} has an
orientation described by the rotation matrix $A(t) after infinitely short period
of time At it has a new orientation given by $A(t + At). The rotation from
the coordinate system {s}; ({s} at time t) to {s}t+a¢ ({s} at time ¢ + At) is
given by

SA(t+ At) = A SA(t) (4.2)

Following the argument in (Goldstein 1950), if rotation of a coordinate system
is infinitely small the matrix of transformation is the sum of the identity
matrix and some small perturbation

A=E+e. (4.3)

Having the matrix A a vector v given at time ¢ can be calculated after time
At

v(t + At) = Av(t), (4.4)
and the change of the vector v is
Av(t) = v(t + At) — v(t) = ev(t). (4.5)

The same changes of v can be analyzed from a geometrical point of view,
see Fig 4.1. A vector v(t) is rotated about a unit vector n by an angle A¢.
The resultant vector is v(t + At). The vector v(t + At) is the sum of vectors
(ﬁ + AD + m . The vector (ﬁ is calculated from the inner product of n
and v(t), 04 = {n,v(t)) n. The vector AD is in the direction of AB and its
magnitude is equal to || AC || cosA¢. The vector DC is in the direction of
v(t) x n and its amplitude is || AcC || sinA¢. Finally

v(it+ At) = (n,v(@))n+ ((v(t) — {n,v(t)))cos Ad + (v(t) x n) sin Ap

= v(t)cosAgp + (n,v(t))n (1 —cos A) + (v(t) X n)sin Ag
(4.6)
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(n,v(t) n

0

Fig. 4.1. A vector v(t) is rotated about a unit vector n by an angle Ag.

Eq. (4.6) for an infinitely small rotation (sin A¢ =~ A¢p, cos Ap =~ 1) takes
the form

Av(t) = v(t) x nAd (4.7

or if the body’s velocity is defined as 2 = nf? (the angular velocity has
direction n and the magnitude (2), where A¢ = 2At, then

Av(t) = v(t) x 2At, (4.8)

Define an isomorphism S : R® — SP3(R), where SP3(R) denotes is a sym-
plectic group of antisymmetric real 3 by 3 matrices

0 v, —Uy
S(w)=|-v, O Ux | - (4.9)
vy  —Ux 0

Now, Eq. (4.8) can be represented in the matrix form
Av(t) = S(R2)v(t) At. (4.10)

Properties of the matrix A will be investigated in the sequel. The inverse
of A is

Al =E—¢, (4.11)
since AA—! = E and

AA' = (E+e)(E—€)=E+e—e=E (4.12)
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In Eq. (4.12) we used the fact that €2 is zero matrix since € is infinitely small
and a linear approximation is considered. Now the orthogonality implies that
the inverse coincides with the transposition thus

E—e=A"T1=AT=E+eT=e"=—¢ (4.13)

In the most general form an antisymmetric matrix can be written as

0o 6, -6,
e=|-6, 0 6,]|. (4.14)
0, —6x O

Comparing the equation above with Eq. (4.5) it is concluded that Awv(t) =
v X O, where @ = [GX 0y HZ]T, and additionally using Egs. (4.8) and
(4.10)

© = At or e = S(2)At. (4.15)

It has been shown that the rotation matrix changes as time progresses
according to Eq. (4.2). A small change of the rotation matrix is modeled by a
perturbation matrix €. It has been demonstrated that € is an antisymmetric
matrix with components coinciding with components of §2At. Using this
information the equation of kinematics can be formulated. The kinematic
equation is the derivative of §A with respect to time

BEA A+ At) A1)
a AT, At ’ (4.16)
but from Eq. (4.2)
BA e S(2)At,, s
at = Al AR T A% T A AT A D)

The vector §2 lies along axis of the infinitesimal rotation occurring between
t and t + 6t. This direction is known as instantaneous axis of rotation. The
vector £2 will be denoted as {25, in the sequel, since it specifies the angular
velocity of the coordinate system {s} in {r}. Remember that the angular
velocity vector £2, is resolved in {s} coordinates, thus more formal notation
would be (£25;),, but it seems to be superfluous, since the angular velocity
always will be resolve in {s} coordinates in this book.

The final remarks is about the rate of change of a vector. Consider a
vector v resolved in {s} coordinates

vs = ;AV, (4.18)

Its rate of change can be calculated using the chain rule

d _ (4 sa (9, da
dtvs = (dtrA> vy + A (dtvr> = S(£2)vs + (dtvr>s' (4.19)
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4.2 Kinematics Parameterized by Unit Quaternion

Consider once again a rotation of the coordinate system {s} in {r}. At time
t the rotation is given by the unit quaternion $q(t). After infinitesimal time
interval At the rotation is changed and given by $q(¢t + At). The rotation
from coordinate system {s}; to {s}t+a¢ is described by

() = q:q(t+ At). (4.20)

The physical interpretation of the unit quaternion was introduced in Sub-
sec. 3.4

- A . A

q = cos —¢e + sin —¢e, (4.21)

2 2
where a unit vector € defines the axis and A¢ is the angle of rotation. Remark
that the scalars are quaternions with vector parts equal to zero, and the
vectors have zero scalar parts. For infinitesimal rotation angle the quaternion
is given by
- A NAt

q=e+76=e+Te. (422)

Denote the angular velocity in the direction € with magnitude (2 by 2, then

2.4
g=e+ 2 . (4.23)

Now kinematic equation can be formulated
®F _ . 3+ A =34
dt At—0 At ’

(4.24)

but from Egs. (4.20) and (4.23)

EG . RaAt 1 3
4 _ sG = =02, 5. 2
pral Uy vl el LA (4.25)

4.3 Kinematics of LEO Spacecraft

The general forms of kinematics for a rotating body were derived in the last
two subsections. The kinematics for a LEO satellite is provided in this sub-
section. In fact, the only difference is that the coordinate system PCS takes
place of {s} and LVLH takes place of {r}, thus for instance the quaternionic
kinematics is

d

~ 1 -
afiq = §R(9po)€q, (4.26)
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where 24 is the unit quaternion describing rotation from LVLH to PCS, £2;,
is the angular velocity of PCS in LVLH, and R() is given in Eq. (3.28). It
is sometimes convenient to represent Eq. (4.26) by an equivalent formula
expressed by separate integrations of the vector and the scalar part of the
quaternion

1

go = _igpoq;

q = %on% - %on X q. (4.27)
The dynamics of a rigid body addressed in the next section corresponds
the spacecraft rotation in an inertial coordinate system, therefore it is nec-
essary to state en explicit formula for relation between §2,, and £2;;. The
rotation of LVLH in ECI is about the axis normal to the orbital plane in the
direction of —j,. The rate of this rotation has the magnitude w, - here we
made an approximation that the orbital plane is invariant, i.e. motion of line
of nodes is disregarded

on = Qpi — 2, = Qpi + wo(t)jo- (428)

The orbital rate, w, is constant for a circular orbit, but time varying for an
elliptic one. Our interest is magnetic control of a spacecraft in a low Earth
orbit with small eccentricity, therefore for control design the orbital rate will
be considered as constant.

5. Dynamics of LEO Spacecraft

The rotational motion about the center of mass is described by the direct
Newtonian approach. The solution is a set of three differential equations
known as Euler’s equation of motion. The dynamics relates torques acting on
the spacecraft to the satellite’s angular momentum. The Euler’s equation in
the inertial coordinates, ECI, is the well known formula

dL
— ) =Nj, 5.1

( dt )i 51)
where IV is the sum of external torques acting on the body, L is the angular

momentum, the subscript i is used because the derivative is with respect to
ECI. The angular momentum is defined as

L =12y, (5.2)
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where | is the inertia tensor, its elements are the inertia coefficients. The iner-
tia tensor has a remarkably convenient form in PCS. In PCS the coordinates
are spanned on the spacecraft’s principal axes, and the inertia tensor is a
diagonal 3 by 3 matrix. The derivative in Eqs. (5.1) can be represented in
body fixed coordinates. Eq. (4.19) can be used for this purpose

G =S@Ey+ (1) =S@LtN, (63
dt @)

Now, the dynamic equation of motion for a rigid spacecraft in LEQO is
102,; () = —25(t) % 19255(t) + Negaa () + Ngg () + Nais(2). (5.4)

In the equation above the subscript p is dropped. Nc(t) is the control
torque, IV g (t) is the gravity gradient torque and NN gis(t) is the disturbance
torques.

5.1 Magnetic torque

Magnetic control torque is generated by an interaction of the geomagnetic
field with the magnetorquer current i(¢) which gives rise to a magnetic mo-
ment m(t)

m(t) = Neoit Gcoit(t) Acoit- (5.5)

The electromagnetic coils are mounted mutually perpendicular and their
placement is defined in SCB, thus the vector representing entire magnetic
moment producible by all three coils is given in SCB. The transformation
from SCB to PCB (in which the Euler equation is given) is necessary, hence
m, = JAmy,. The control torque acting on the satellite is

thrl(t) = m(t) X B(t)a (56)

where B(t) is the magnetic flux vector of the Earth. The magnetic moment,
m, is considered as the control signal in the following. In Eq. (5.6) the sub-
script p is dropped.

5.2 Geomagnetic Field

The geomagnetic field is essentially that of a magnetic dipole. The south pole
is in the northern hemisphere at about 79°N latitude and 290°FE longitude.
There are certain deviations from the dipole model called anomalies. The
largest anomalies are encountered over Brazil and Siberia. The exact nature
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©10° Geomagnetic field [T]
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Fig. 5.1. The geomagnetic field vector in LVLH for a polar orbit propagated by
the 10th order spherical harmonic model during a period of 24 h.

of the geomagnetic field generator is unknown, however the solution can be
conveniently expressed in spherical harmonics (Langel 1987).

k n
V(r,6,¢) = az (;) i Z (ga cosme + hy' sinmg) P (), (5.7
n=1

m=0

where a, 7, 8, ¢ are the equatorial radius of the Earth, the geocentric dis-
tance, coelevation, east longitude from Greenwich, respectively. The functions
P™(0) are the associated Legendre function, see (Langel 1987). The set of
Gaussian coefficients g, hy is specified by the International Reference Field
(IGRF)

Consider a near polar orbit. The geomagnetic field observed in this orbit,
seen in LVLH, has large the x and z components, while the y component is
comparatively small. The orbit position is well approximated as fixed in ECI,
thus the rotation of the Earth is visible via fluctuations of the geomagnetic
field vector’s y component with frequency 1/24 1/hour. An example of geo-
magnetic field variation on orbit is given in Fig. 5.1. The geomagnetic field
has been computed using 10th order spherical harmonic model (k = 10 in
Eq. (5.7)).

5.3 Momentum/Reaction Wheels

A spacecraft equipped with momentum or reaction wheels is no longer a
rigid body, since the wheels are rotating. This provides an extra angular
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momentum which contributes to the total momentum. The total angular
momentum of the spacecraft and the weels is

L =102y + hy, (5.8)

where hy, is the angular momentum of the wheels. The following equation
follows after substituting Eq. (5.8) into Eq. (5.9)

dhoy ()

1920i(t) = ~ 2 (1) X (1255(8) + Py (1)) — 2

+ Ngg(t) + Nais(t). (5.9)

Now the factor dhst(t) is treated as the control input.

5.4 Gas Jet

A gass jet generates a thrust force at the place it is mounted to the spacecraft
structure. If the distance from the centre of mass to the jet is nonzero, a torque
may originate. The torque produced by the gas jet is given by

Njet =7 X Fjeta (510)

where 7 is the vector from the center of mass to the thruster, F'je; is the force
generated by the thruster.

The gass jets is characterized by the minimum opening and closing times,
i.e. the delay times from commanded start/stop to the instant when the trust
begins to buildup/decay. Additionally the thrust profile includes the rise/fall
time, which is the time required to establish steady state propellant flow.
More details can be found in (Wertz 1990).

5.5 Gravitational Torque

Gravitational torque is fundamental component for the model of a LEO space-
craft motion. The gravitational field in space is not uniform, therefore the
gravitational forces acting on specific parts of the spacecraft construction are
different. Integration of this effects over the whole body gives the gravita-
tional torque. If one makes the assumptions that

— Only gravitational field of the Earth is considered.

— The Earth possesses a spherically symmetric mass distribution.

— The spacecraft is small compared to its distance from the center of the
Earth.

— The spacecraft consists of a single body
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then the model of the gravitational torque according to (Hughes 1986) is

Ny = £ (Rem x I°Ren), (5.11)

R
where p is the Earth gravitational constant, R.m is the distance from the
center of the Earth to the spacecraft’s center of gravity (Rem is a subject of
variation, when an elliptic orbit is considered), Re¢n, is the unit vector from
the center of the Earth to the spacecraft’s center of mass, nadir. Observe
that nadir is equivalent to the unit vector on the z axis of LVLH, k,, and
the constant ph— = w2, where w, is the orbital rate. Now, the gravitational
torque is -

Ngg = 3w2(ko % | ko). (5.12)

5.6 Disturbance Torques

There are three main sources of disturbance torques acting on LEO space-
craft: the radiation pressure, residual magnetic moment and aerodynamic
drag.

5.6.1 Radiation Pressure

The pressure is due to solar radiation incident on a spacecraft surface. The
radiation pressure depends on the the inverse of the square of the distance
from the Sun. It is roughly independent on the altitude and its order of mag-
nitude is 10~ Nm. Solar radiation torque varies dependent on the geometry
and optical properties of the spacecraft’s surfaces, furthermore it is different
for different spacecraft’s orientations relative to the Sun. Explicit formulas
for solar pressure torque are provided in (Cappellari 1976).

5.6.2 Residual Magnetic Moment

The disturbance magnetic torque is originated from the interaction between
residual magnetic field of the spacecraft and the magnetic field of the Earth.
There are three main sources of the magnetic torque: spacecraft magnetic
moments, eddy currents and hysteresis. The spacecraft magnetic moments
generate a torque according to Eq. (5.6), where m is now the sum of residual
magnetic moments rather than the control signal. Spinning motion of the
spacecraft induces the eddy currents, which are interacting with the magnetic
field of the Earth giving a torque. In a permeable material rotating in the
geomagnetic field energy is dissipated to heat due to frictional motion of
the magnetic domain. The energy loss over one rotation gives rise to the
disturbance torque due to hysteresis. The order of magnitude of the magnetic
disturbance torque can reach 10~* Nm. More details and references to other
works on modeling of the magnetic disturbance torque can be found in (Wertz
1990).
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5.6.3 Aerodynamic Torque

The aerodynamic drag is the main disturbance torque acting on LEO space-
craft. Its magnitude can be as large as 107! Nm for en orbits with 100 km
altitude. The interaction of the upper atmosphere molecules with satellite’s
surface introduces an aerodynamic torque. Assuming that the energy of the
molecules is totally absorbed on impact with the spacecraft, the force d faero
on a surface element dA is described by

1
dfaero = —§CDpv2(n -v)vdA, (5.13)

where 1 is an outward normal to the surface, v is the unit vector in the
direction of the translational velocity of the surface element relative to the
incident stream of the molecules. The atmospheric density is denoted by p,
and the drag coefficient by Cpb.

The total aerodynamic torque is determined by integration over the total
spacecraft surface. One can approximate the satellite structure by a collection
of simple geometrical figures. The total aerodynamic torque is the sum of the
torques acting on individual parts of the satellite

k
Naero = Y _1i X Fi, (5.14)
i=1

where r; is the vector from the spacecraft center of mass to the center of
pressure of the ith element.

To simplify the expression in Egs. (5.14) and (5.13) assume that the satel-
lite is modeled as a number of plane surfaces. The aerodynamic torque then
becomes

k
1
Naero = ECDpvz ;A,(n, . ’U)’U X7r; (515)
where A; is the surface areas. Eq. (5.15) can be furthermore decomposed into
a sum of 3 surfaces: A; perpendicular to the x-axis of PCS, the cross section

surface perpendicular to the y-axis of PCS, As, and the cross section surface
perpendicular to the z-axis of PCS, As.

Nuwo = 5Cop0? (A1 (100]" o) o x 11
+ A ([010]" - 45) 0 x 72
+ As([001]7 - 45) i x 73) . (5.16)

5.6.4 Atmospheric model

The most commonly known model for atmospheric density is Jacchia-Roberts
atmospheric model, see (Cappellari 1976). The model includes semiannual,
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semidiurnal, terdiurnal, and diurnal variations. The atmospheric density is
determined as a function of the satellite altitude and the exospheric tem-
perature. The exospheric temperature is parameterized by the daily average
10.7-centimetre solar flux, Fig.7, as observed in the solar observatory at Ot-
tawa, Canada, and a geomagnetic activity index: the geomagnetic planetary
index, K.

6. Rotational Energy of Rigid Body

The model of the spacecraft motion given by the Euler equation is based
on the momentum conservation theorem. For some control applications it is
more convenient to use energy of rotating body, instead. The energy of a
spacecraft is defined with respect to LVLH, which is the reference coordinate
system for attitude control.

6.1 Kinetic Energy

The standard kinetic energy of the satellite is a quadratic form reflecting the
spacecraft’s velocity in an inertial coordinate system. In this study we focus
only on the rotation of the spacecraft with respect to the reference coordinate
system, LVLH.

The total angular velocity of the spacecraft (or rather the angular velocity
of the coordinate system PCS) relative to ECI is a sum of the spacecraft’s
angular velocity with respect to LVLH and the angular velocity of the space-
craft’s revolution about the Earth (the orbital rate). If the portion due to the
orbital rate is disregarded then kinetic energy of the rotary motion is

Fan(t) = %.QIT,O(t)I.QCO(t). (6.1)

6.2 Potential Energy

The potential energy due to the gravity gradient is minimum (E,, = 0)
when the z axis of PCS (the axis of minimum moment of inertia) is ideally
aligned with the z axis of LVLH, since there is no gravity gradient acting on
the spacecraft. Its maximum value is reached when the spacecraft attitude is
such that the z axis of LVLH coincides with the y axis of PCS (the z axes
of PCS and LVLH are orthogonal). The potential energy associated with the
gravity gradient can be then considered as a measure of the inclination angle
between z axes of PCS and LVLH. It is formulated as
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By () = 57 (KL (1ko() ~ 1) (62)

where the vector k, is a unit vector along the z axis of LVLH. It is important
to note that Eq. (6.2) is resolved in PCS, thus | is a constant diagonal matrix
and ko (t) is time varying. The moment of inertia about the z axis, I,, is
subtracted from the left hand side of Eq. (6.2) to make the minimum energy
equal to zero.

It is assumed in Eq. (6.2) that the orbit is near circular and thus the
orbital rate, w, is well approximated by a constant. As an example take an
orbit with eccentricity e = 0.025 (apogee 850 km, perigee 450 km), one can
conclude that for this orbit w, is constant within 3 percent.

The potential energy has also a component originating from the revolution
of the satellite about the Earth. Consider the summand $2,;(¢) x 182, (%) in
the equation of dynamics (5.4). Using Eq. (4.28) this term can be rewritten
as

Qui(t) X 125(1) = 2po(t) X 1200 (t) — Wojo(t) X 12,0(t)
— WolZpo(t) X 1o (1) + wigo(t) X 1Go(t),  (6.3)

where j, is a unit vector on the y axis of LVLH, but since the whole equation
is represented in the PCS axes j,(t) is time varying.

The summand wZ2j, (t) x 17,(t) is not dependent on the satellite’s angular
velocity, and hence gives a contribution only to the potential energy. There-
fore, the potential energy due to the revolution of the satellite about the
Earth is

1 Ty -
Egyro(t) = 5(“)(2) (Iy - JEIJO) - (64)
The minimum of this energy (FEgyro = 0) is obtained when the y axis of PCS

is aligned with the y axis of LVLH, and maximum when the z axis of PCS
coincides with the y axis of LVLH.
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