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ONE DIMENSIONAL MODELS OF EXCITONS IN

CARBON NANOTUBES

H.D. CORNEAN, P. DUCLOS, AND T.G. PEDERSEN

Abstract. Excitons in carbon nanotubes may be modeled by two
oppositely charged particles living on the surface of a cylinder. We
derive three one dimensional effective Hamiltonians which become
exact as the radius of the cylinder vanishes. Two of them are
solvable.

1. Introduction and Motivation

An exciton in a straight carbon nanotube is reasonably well described
by two oppositely charged spinless quantum particles living on the
surface of an infinite cylinder C. Once the center of mass has been
removed and with ”mathematical” units, the Hamiltonian governing
such a system is

H := −∆

2
− V r, V r(x, y) :=

1
√

x2 + 4r2 sin2 y

2r

acting in H := L2(C, C). Here, C is the configuration space, i.e. (rS1)×
R, the infinite circular cylinder with radius r. x is the coordinate along
the axis of C and y the length along transversal sections. Notice that
V r is just the Coulomb potential in the ambient space R

3 expressed in
the cylinder coordinates.

To present the content of this paper it is convenient to introduce the
spectral decomposition of −1

2
∆y := −1

2
∂2

y , i.e. the one dimensional

Laplacian on L2(−πr, πr) with periodic boundary conditions:

−1

2
∆y =

∞
⊕

m=0

m2

2r2
Πr

m

where Πr
m denotes the eigenprojector on the mth eigenspace spanned

by the transverse eigenmodes: χr
±m(y) := (2π)−

1

2 e±imyr−1

. When the
radius r gets smaller and smaller transitions between these transverse
eigenmodes become more and more difficult since the spacing between
the corresponding energies behaves like const r−2. This is why when
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interested by the lowest energies of this system it is natural to con-
sider the effective Hamiltonian obtained by projecting H on Heff :=
Ran IΠeff := Ran 1⊗Πr

0, i.e. the span of χr
0. This effective Hamiltonian

is unitarily equivalent to

Heff := −1

2
∆x − V r

eff , V r
eff(x) :=

1

2πr

∫ πr

−πr

dy
√

x2 + 4r2 sin2 y

2r

acting in L2(R). It can be seen that V r
eff has a |x|−1 behaviour at infinity

( see Eq. (2) below) and diverges logarithmically at the origin. This
shows that V r

eff is relatively bounded to H0 with relative bound zero,
so that Heff is selfadjoint on the domain of H0 := −1

2
∆x. Since Heff

does not seem to be analytically solvable, we propose two other one
dimensional Hamiltonians, which are indeed solvable:
(1)

Hδ := −1

2
∆x + log(r2)δ(x) (r < 1), HC := −1

2
∆x −

1

|x| + b.c. at 0

both acting in L2(R); here δ denotes the Dirac distribution at 0, and
b.c. means an appropriate boundary condition, see (9) for a precise
definition.

These three effective Hamitonians are intrinsic since we are able to
show, with Hmod denoting anyone of them, that: ‖(H−ζ)−1− (Hmod−
ζ)−1IΠeff‖ tends to 0 as r → 0, for appropriate values of the spectral
parameter ζ. Beside the fact that it shows the one dimensional char-
acter of excitons in carbon nanotubes, such a property is the starting
point for perturbation theory and allows to compute the lowest part of
spectrum of H, as well as the corresponding eigenstates, with rigorous
error bounds.

As well known Hδ has a unique bound state with energy: −2 log2 r; it
follows at once that E0(r) := inf H is a simple eigenvalue of H which
fulfills

E0(r)
r→0
= −2 log2 r(1 + o(1)).

That E0(r) tends to −∞ as r → 0 is an illustration of the binding
enhancement of excitons in one dimensional structures, see [2] for a
discussion of this phenomenon. With the Coulomb model HC we have
a much more accurate localization of E0(r) and we are in position to
compute all negative excited states of H.

Most of the strategy and computations used here are borrowed from
[1] where atoms in strong magnetic fields are studied, with however
some discrepancies due to the fact that here we are dealing with a two
dimensional problem instead of the three dimensional one for atoms.
This is why in the rest of this paper we shall only sketch the proofs
and stress the new aspects.
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Finally let us mention two papers [3, 4] which deal with the same
problem heuristically with variational methods.

2. Effective Hamiltonians

2.1. Comparison of Heff with the δ model. V r
eff has the following

important scaling property:

V r
eff(x) =

1

r
V 1

eff(
x

r
).

If V 1
eff would be in L1(R) this would imply by classical arguments that

V r
eff tends to δ as r → 0. However V 1

eff is not in L1(R) as can be seen by
expanding V 1

eff at infinity. First V 1
eff(x) = 2π−1|x|−1K(−4x−2) where K

denotes the complete elliptic integral of the first kind and then

(2) V 1
eff(x)

|x|→∞
=

1

|x| + O(|x|−3).

Instead we shall prove in the next subsection that ( log2(x) := log(log(x)))
(3)

‖(H0+α2)−
1

2 (V r
eff+log r2δ)(H0+α2)−

1

2‖ r→0
= O

(

log α

α

)

= O
(

log2(r
−1)

log(r−1)

)

with

(4) α =
√

2| log r2|
and H0 := −1

2
∆x. Let Reff(ζ) := (Heff − ζ)−1, Rδ(ζ) := (Hδ − ζ)−1,

then one has, using the symmetrized resolvent formula,

‖Reff(ζ) − Rδ(ζ)‖ ≤ ‖Rδ(ζ)‖ ‖K(ζ)‖
1 − ‖K(ζ)‖

with K(ζ) := Rδ(ζ)
1

2 (−V r
eff − log(r2)δ)|Rδ(ζ)| 12 . With the help of (3)

one gets for r small enough

‖K(ζ)‖ ≤ ‖Rδ(ζ)
1

2 (H0 + α2)
1

2‖2 const
log α

α

≤ ‖Rδ(ζ)
1

2 (Hδ + α2)
1

2‖2‖Rδ(−α2)
1

2 (H0 + α2)
1

2‖2 const
log α

α
.

We assume now that

(5) dδ(ζ) := dist (ζ, spect Hδ) ≥ cδα
2 with 0 < cδ ≤ 1,

then by spectral theorem ‖Rδ(ζ)
1

2 (Hδ + α2)
1

2‖2 ≤ max{α2/dδ(ζ), 1} =

1/cδ and using Krein’s formula, ‖Rδ(−α2)
1

2 (H0 + α2)
1

2‖2 = 2. At last
we have obtained that under (5) and for r small enough

‖K(ζ)‖ ≤ 2const

cδ

log α

α

so that ‖K(ζ)‖ ≤ 1

2
, again for r small enough. Thus we have proven
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Theorem 1. Let α :=
√

2| log r2|. For any 0 < cδ ≤ 1 there exists

rδ > 0 such that if dδ(ζ) ≥ cδα
2 and r < rδ one has ζ ∈ ρ(Heff), the

resolvent set of Heff , and

‖(Heff − ζ)−1 − (Hδ − ζ)−1‖ ≤ Cδ

cδ

log α

α

1

dδ(ζ)
.

Here Cδ is a constant which depends only on V 1
eff .

By standard perturbation theory one gets:

Corollary. In particular Eeff(r) := inf Heff is a simple isolated eigen-

value of Heff . Denote by ϕeff the corresponding eigenstate, and ϕδ the

one of Hδ, then

Eeff(r)
r→0
= −2 log2 r + O

(

log r−1 log2 r−1
)

,

‖ϕeff − ϕδ‖ r→0
= O

(

log2(r
−1)

log r−1

)

.

2.2. Comparison of Heff with the Coulomb model. We start by
showing various properties and approximations of V r

eff . It is straightfor-

ward to compute V̂ 1
eff explicitly: V̂ 1

eff(p) =
√

2π− 1

2 I0(|p|)K0(|p|), where
I0 and K0 denote the modified Bessel functions of first and second kind
respectively. From which follows at once that (γ denotes the Euler con-
stant):

(6)
√

2πV̂ 1
eff(p)

p→0
= −2 log(|p|) + 2 (−γ + log 2) + O(p2 log |p|)

and
√

2πV̂ 1
eff(p)

|p|→∞
= |p|−1 +O(|p|−3). Thus we may assume that there

exists Ceff > 0 so that |V̂ 1
eff(p)|2 ≤ C2

eff(log2 |p| + 1). Let HS stand for
Hilbert-Schmidt norm then

‖(H0 + α2)−
1

2 V̂ r
eff(H0 + α2)−

1

2‖2
HS =

1

2π

∫

R×R

|V̂ r
eff(p − q)|2dpdq

(p2

2
+ α2)( q2

2
+ α2)

≤
√

2

πα

∫

R

|V̂ 1
eff(pr)|2dp

p2 + 8α2
≤

√
2C2

eff

πα

∫

R

(log2 |pr| + 1)dp

p2 + 8α2

= C2
eff

4 + π2 + 9 log2 2 + 4 log(rα) log(8rα)

8α2
.(7)

This shows several properties: (a) V r
eff is H0-compact for any r > 0,

(b) it follows that the essential spectrum of Heff is R+. (c) Since it can
be seen that the above bound may be made smaller than one if r is
small enough and 0 < α ≤

√
2| log r2|, the number −2 log2 r2 is a lower

bound on the spectrum of Heff for such r’s.

Again with (6) we get
√

2πV̂ r
eff(p) + log r2 p→0

= −2 log |p| + O(1)
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where the O(1) is valid on ]0, r−1]. Thus

√
2

πα

∫

|p|<r−1

∣

∣

∣
V̂ r

eff(p) + log r2 1√
2π

∣

∣

∣

2

dp

p2 + 8α2
≤ const

α

∫ r−1

0

(log2 p + 1)dp

p2 + 8α2

= O(
log2 α

α2
).

On the other hand:

√
2

πα

∫

|p|>r−1

∣

∣

∣
V̂ r

eff(p) + log r2 1√
2π

∣

∣

∣

2

dp

p2 + 8α2
≤ const

α

∫ ∞

r−1

(log2(pr) + 1)dp

p2
= O(

r

α
).

Putting together the last two estimates proves (3).

Finally let
√

2πV̂ r
C(p) := −2 log |pr| + 2(log 2 − γ) then in view of (6)

it follows that p−1X̂r := p−1(V̂ r
eff − V̂ r

C) ∈ L2(R); therefore

‖(H0 + α2)−
1

2 (V r
eff − V r

C)(H0 + α2)−
1

2‖2
HS ≤

√
2

πα

∫

R

|X̂1(pr)|2dp

p2 + 8α2

=

√
2r

πα

∫

R

|X̂1(p)|2dp

p2 + 8r2α2
≤

√
2r

πα

∫

R

|X̂1(p)|2dp

p2
= O

( r

α

)

.(8)

Taking the inverse Fourier image of the distribution −2 log |pr|+2(log 2−
γ) shows that

(9) VC(x) = − log
r2

4
δ(x) + fp

1

|x|
where fp 1

|x| denotes the finite part of |x|−1 distribution.

Combining (7) and (8) one sees that VC is H0-compact for any r > 0
so that HC = H0 − VC makes sense as a self adjoint operator with
form domain H1(R), the first Sobolev space. This shows also that the
essential spectrum of HC is R+. Since HC commutes with the parity
operator, its discrete spectrum may be decomposed in its odd and even
part. By standard arguments, they both consist of simple eigenvalues
and they intertwine. Looking at (9) one realizes that the odd spectrum
does not depend on r and coincides with the spectrum of the Hydrogen
atom in the s-wave sector:

spectdisH
odd
C = {−1

2
,−1

8
, . . . ,− 1

2n2
, . . .}.

Again looking at (9) one sees that the discrete even spectrum is mono-
tone increasing as a function of r and that as r tends to 0 or ∞ the
value of the corresponding eigenfunctions at the origin must tend to
zero; in other words the discrete even spectrum converges to the odd
one, except for the lowest eigenvalue which tends to −∞ as r tends
to 0. Finally we may estimate ‖(Heff − ζ)−1 − (HC − ζ)−1‖ as in the
previous subsection with the help of (8).

5



Theorem 2. Let α :=
√

2| log r2|. There exists CC and rC > 0 such

that if α ≥ dC(ζ) := dist (ζ, spect HC) ≥ 2CCrα and 0 < r < rC then

ζ ∈ ρ(Heff) and ‖(Heff − ζ)−1 − (HC − ζ)−1‖ ≤ CC

rα

dC(ζ)2
.

For any eigenvalue EC with eigenvector ϕC of HC there exist an eigen-

value Eeff of Heff and an associated eigenvector ϕeff such that

Eeff − EC

r→0
= O(rα), and ‖ϕeff − ϕC‖ r→0

= O(rα).

Moreover this exhausts the negative discrete spectrum of Heff .

2.3. Reduction of H to Heff . To compare H and Heff we resort to
the Feshbach reduction:

(H − ζ)−1 =

(

S SV rR
RV rS R + RV rSV rR

)

with










S := (Heff + W − ζ)−1

W := −IΠeffV rRV rIΠeff

R := (IΠ⊥
effHIΠ⊥

eff − ζ)−1.

Here IΠ⊥
eff projects on the orthogonal complement Heff . The proof of

the next theorem while classic is too involved technically to be reported
in this short article. It follows closely [1] except for the estimate

‖(H0 + β)−
1

2 W (H0 + β)−
1

2‖ ≤ π2

3
√

2
‖V 1

eff‖2
2

r

β
,

which cannot rely on Hardy’s inequality since here V r has a Coulomb
singularity in dimension two and not three. We denote by pl : R+ →
R+ the principal branch of the inverse mapping of x → xex.

Theorem 3. There exists reff > 0, ceff > 0 and Ceff > 0 such that if

0 < r < reff and pl(r−1)2 ≥ deff(ζ) := dist (ζ, spect Heff) ≥ ceff r pl(r−1)
then ζ ∈ ρ(H) and

‖(H − ζ)−1 − (Heff − ζ)−1IΠeff‖ ≤ Ceff

r pl(r−1)2

deff(ζ)2
.

3. Conclusion

We have proposed a perturbative method which is able to give the
leading behaviour as r tends to zero of all negative eigenvalues of H
as well as of its corresponding eigenvectors. For the ground state the
delta model Hδ is sufficient. For the excited states it is necessary to
use the Coulomb model and to determine the behaviour of its negative
eigenvalues. It would be rather easy to compute the next terms in these
asymptotics as long as the influence of the higher transverse modes does
not manifest itself.
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