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Abstract

This article concerns a perfect simulation algorithm for unmarked and marked

Hawkes processes. The usual straightforward simulation algorithm suffers from

edge effects, whereas our perfect simulation algorithm does not. By viewing

Hawkes processes as Poisson cluster processes and using their branching and

conditional independence structure, useful approximations of the distribution

function for the length of a cluster are derived. This is used to construct

upper and lower processes for the perfect simulation algorithm. Examples of

applications and empirical results are presented.
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1. Introduction

This paper concerns a perfect (or exact) simulation algorithm for unmarked and

marked Hawkes processes [7, 9, 10, 11, 13]. Such processes play a fundamental role

for point process theory and its applications, cf., for example, p. 183 in [7]. Particu-

larly, marked Hawkes processes have applications in seismology [12, 21, 22, 26] and

neurophysiology [3, 6].
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For mathematical convenience (see Sections 2.2 and 6) we restrict attention to

marked Hawkes processes with unpredictable marks. Such a process X = {(ti, Zi)} ⊂

R×M is defined as follows, where M denotes an arbitrary mark space (equipped with

a σ-field).

Definition of a marked Hawkes process with unpredictable marks:

• Each event (or time) ti is of one of two types: an immigrant or an offspring. The

immigrants follow a Poisson point process, with an intensity function µ(t) on R,

which is locally integrable. This process is called the immigrant process.

• The process has unpredictable marks in the sense that each mark Zi follows the

same probability distribution Q on M , which is independent of ti and the previous

history {(tk, Zk) : tk < ti}.

• If we condition on (ti, Zi), then independently of the previous history, (ti, Zi)

generates a Poisson point process Φ(ti) of offspring on (ti,∞), with intensity

function γi(t) = γ(t − ti, Zi), t > ti, where γ is a non-negative measurable

function on (0,∞) × M (for convenience we suppress in the notation that Φ(ti)

may depend on Zi). The process Φ(ti) is called an offspring process, and we refer

to γi and γ as fertility rates.

The paper is organised as follows. Section 2 contains some preliminaries, in particu-

lar we view the marked Hawkes process as a Poisson cluster process and describe the

branching and conditional independence structure of each cluster. Section 3 describes

a straightforward simulation algorithm, which suffers from edge effects, and a perfect

simulation algorithm, which does not. The perfect simulation algorithm is derived

using similar principles as in Brix and Kendall [5], but our algorithm requires the

knowledge of the cumulative distribution function (c.d.f.) F for the length of a cluster.

Section 4 determines an integral equation for F by generalising a result in Hawkes

and Oakes [13]. Particularly, it is discussed how to approximate F (since a closed

form expression is unknown) by establishing certain monotonicity and convergence

results. Section 5 completes the perfect simulation algorithm by using a dominating

process and upper and lower processes in a similar fashion as in the Propp-Wilson

algorithm [23], or rather as in the dominated coupling from the past algorithm by

Kendall and Møller [15]. Moreover, throughout Sections 2–5, illuminating examples
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and empirical results are presented. Finally, Section 6 contains a discussion of our

algorithms and results and how to extend these to more general settings.

2. Preliminaries and examples

2.1. Some useful properties

From the definition above the following properties immediately follow. The marks

are i.i.d. with distribution Q. In the special case where γ(t, z) = γ(t) does not depend

on its second argument, the events follow an unmarked Hawkes process. Apart from

that case, the events and the marks are dependent processes. The conditional intensity

function λ(t) at time t ∈ R for the events given the previous history {(tk, Zk) : tk < t}

(see e.g. [7]) is given by

λ(t) = µ(t) +
∑

ti<t

γ(t − ti, Zi). (1)

2.2. The branching and conditional independence structure of marked Haw-

kes processes

It becomes useful to view the marked Hawkes process as a Poisson cluster process,

with cluster centres given by the immigrants, and clusters defined as follows. For events

ti < tj , we say that (tj , Zj) has ancestor ti of order n ≥ 1 if there is a sequence s1 . . . , sn

of offspring such that sn = tj and sk ∈ Φ(sk−1) for k = 1, . . . , n, where s0 = ti. We

say then that tj is an offspring of n-th generation with respect to ti; for convenience we

say that ti is of zeroth generation with respect to itself. Now, define the total offspring

process Ci as all (tj , Zj) such that tj is an event of generation n ∈ N0 with respect to ti

(note that (ti, Zi) ∈ Ci). The clusters are defined as those Ci where ti is an immigrant.

The total offspring processes have the same probability structure relative to their

generating events because of the following branching structure (see also Figure 1).

• Conditional on an event ti, its mark Zi follows Q (independently of the previous

history); if we also condition on Zi, then Φ(ti) (the first generation of offspring

with respect to ti) is a Poisson process with intensity function γi(t); conditioning

further on Φ(ti), the events in Φ(ti) generate independent total offspring processes

Cj , tj ∈ Φ(ti).
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• If we furthermore condition on such a tj , then Zj follows Q; if we also condition

on Zj , then Φ(tj) (the second generation of offspring with respect to ti) is a

Poisson process with intensity function γj(t); conditioning moreover on Φ(tj),

the events in Φ(tj) generate independent total offspring processes Ck, tk ∈ Φ(tk).

• Similarly for the third, fourth, . . . generation of offspring with respect to ti.

Since γi(t) = γ(t − ti, Zi) for any event ti, we see that conditional on events ti < tj ,

the translated total offspring processes Ci − ti ≡ {(tl − ti, Zl) : (tl, Zl) ∈ Ci} and

Cj − tj ≡ {(tl − tj , Zl) : (tl, Zl) ∈ Cj} are identically distributed.

In particular, conditional on the immigrants, the clusters relative to their cluster

centres (the immigrants) are i.i.d. with distribution P, say. Furthermore, conditional

on the n-th generation events Gn, say, in a cluster, the translated total offspring

processes Cj − tj with tj ∈ Gn are i.i.d. with distribution P. We refer to this last

property as the i.i.d. self-similarity property of offspring processes or for short the self-

similarity property. Note that the assumption of unpredictable marks is essential for

these properties to hold.

0
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Figure 1: Top: The branching structure of a cluster in an unmarked case; the numbers

indicate which generations the events are. Bottom: The events on the time axis.

2.3. A basic assumption and some terminology and notation

Let F denote the c.d.f. for the length L of a cluster, i.e. the time between the

immigrant and the last event of the cluster. Consider the mean number of events in
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any offspring process Φ(ti), ν̄ ≡ Eν, where

ν =

∫ ∞

0

γ(t, Z) dt

is the total fertility rate of an offspring process and Z denotes a generic mark with

distribution Q. Henceforth we assume that

0 < ν̄ < 1. (2)

The condition ν̄ < 1 appears commonly in the literature on Hawkes processes, see

e.g. [4, 7, 13]. It implies that

F (0) = Ee−ν > 0 (3)

where F (0) is the probability that a cluster has no offspring. It is equivalent to assuming

that ES < ∞, where S denotes the number of events in a cluster: By induction on

n ∈ N0, because of the branching and conditional independence structure of a cluster,

ν̄n is the mean number of generation n events in a cluster, so

ES = 1 + ν̄ + ν̄2 + · · · = 1/(1 − ν̄) (4)

if ν̄ < 1, while ES = ∞ otherwise.

The other condition ν̄ > 0 excludes the trivial case where there are almost surely

no offspring. It is readily seen to be equivalent to

F < 1. (5)

Furthermore,

h(t) = E[γ(t, Z)/ν], t > 0, (6)

and

h̄(t) = Eγ(t, Z)/ν̄, t > 0, (7)

are well-defined densities (with respect to Lebesgue measure). The density h̄ will play

a keyrole later in this paper; it can be interpreted as the normalised intensity function

for the first generation of offspring in a cluster started at time 0. Note that h specifies

the density of the distance R from an arbitrary offspring to its nearest ancestor. In

the sequel, since the clusters relative to their cluster centers are i.i.d. (Section 2.2), we
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assume without loss of generality that L, R and S are defined with respect to the same

immigrant t0 = 0, with mark Z0 = Z.

Clearly, if L > 0 then R > t implies L > t, so the distribution of L has a thicker

tail than that of R. The probability function for S is given by P (S = k) = P (Sn+1 =

k−1|Sn = k)/k, k ∈ N, where Sn denotes the number of events of n-th generation and

n ∈ N is arbitrary (see [8] or Theorem 2.11.2 in [14]). Thus

P(S = k) = E
[

e−kν(kν)k−1/k!
]

, k ∈ N. (8)

2.4. Examples

Throughout the paper, we illustrate the results with the following cases.

Example 1. (Unmarked process) An unmarked Hawkes process with exponentially

decaying fertility rate is given by

ν̄ = ν = α, h̄(t) = h(t) = βe−βt,

where 0 < α < 1 and β > 0 are parameters. Here 1/β is a scale parameter for both

the distribution of R and the distribution of L.

Figure 2 (at left) shows perfect simulations on [0, 10] of this process when µ(t) = 1

is constant, α = 0.9, and β = 10, 5, 2, 1. By (4), we expect to see about 10 clusters (in

total) and 100 events. The clusters of course become more visible as β increases.

Figure 3 (at left) shows six simulations of clusters with α = 0.9 (being an inverse

scaling parameter, β is irrelevant since we have omitted showing the scale to get com-

parable results for this example and the following two examples). All the clusters have

been simulated conditional on S > 1 to avoid the frequent and rather uninteresting case

containing only the immigrant. These few simulations indicate the general tendency

that L vary fairly much. �

Example 2. (Birth-death process) Consider a marked Hawkes process with

γ(t, Z) = α1[t ≤ Z]/EZ,

where 0 < α < 1 is a parameter, Z is a positive random variable, and 1[·] denotes the

indicator function. Then X can be viewed as a birth and death process, with birth at
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Figure 2: Left: Four perfect simulations on [0, 10] of the unmarked Hawkes process

(Example 1) with parameters α = 0.9, µ = 1, and β = 10, 5, 2, 1 (top to bottom). Random

jitter has been added in the vertical direction to help distinguishing events located close

together. Right: Three perfect simulations on [0, 10] of the birth-death Hawkes process

(Example 2) with parameters α = 0.9, µ = 1, and β = 5, 2, 1 (top to bottom), where the

projections of the lines onto the horizontal axis show the size of the marks.

time ti and survival time Zi of the i’th individual. The birth rate is

λ(t) = µ(t) + (α/EZ)card
(

{i : ti < t ≤ ti + Zi}
)

, t ∈ R,

cf. (1). Moreover,

ν = αZ/EZ, ν̄ = α, h(t) = E(1[t ≤ Z]/Z), h̄(t) = P(Z ≥ t)/EZ.

Since ν is random, the distribution of S is more dispersed than in the unmarked case,

cf. (8).

The special case where µ(t) = µ is constant and Z is exponentially distributed

with mean 1/β is considered at page 136 in [4]. Then X is a time-homogeneous

Markov birth-death process with birth rate µ + αβn and death rate βn, when n is the

number of living individuals. In this case h̄(t) = βe−βt and h(t) = βE1(βt), where

E1(s) =
∫∞

s
e−t/t dt is the exponential integral function. As in Example 1, 1/β is a

scale parameter for the distribution of L. As discussed in Example 8 in Section 5, the

stationary distribution (i.e. the distribution of X at any fixed time) is known up to

proportionality and it is possible to simulate from this by rejection sampling.
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Figure 3: Left: Six simulations of clusters started at zero and conditioned on S > 1 in the

unmarked case with α = 0.9. Middle: As left, but for the birth-death case. Right: As left,

but for the heavy-tailed case. Different scalings are used in the three cases.

Figure 2 (at right) shows three perfect simulations in the Markov case on [0, 10]

with µ = 1, α = 0.9, and β = 5, 2, 1, where the marks are indicated by line segments

of different lengths. Figure 3 (at middle) shows six simulations of clusters (with

marks excluded) with α = 0.9 simulated conditional on S > 1. These simulations

slightly indicate that L is more dispersed than in Example 1, since the marks introduce

additional variation in the cluster lengths. In fact the coefficient of variation estimated

from 10000 perfect simulations is 1.92 for Example 1 and 2.85 for the present case. �

Example 3. (A heavy-tailed distribution for L) Suppose that

γ(t, Z) = αZe−tZ ,

where α ∈ (0, 1) is a parameter and Z is exponentially distributed with mean 1/β.

Then ν̄ = ν = α is constant, so the distribution of S is the same as in the unmarked

case, cf. (8). Further,

h(t) = h̄(t) = β/(t + β)2

specifies a Pareto density. This is a heavy-tailed distribution as is has infinite Laplace

transform (L(θ) = EeθR = ∞ for all θ > 0). Moreover it has infinite moments

(E
(

Rp
)

= ∞ for all p ≥ 1). Consequently, L also has a heavy-tailed distribution

with infinite moments and infinite Laplace transform. Note that β is a scale parameter

for the distribution of L.
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Figure 3 (at right) shows six simulations of clusters with α = 0.9 and β = 1. These

indicate that L is much more dispersed than in Examples 1 and 2 (in fact the dispersion

is infinite in the present case). �

3. Perfect Simulation

In this section we introduce the usual straightforward simulation algorithm, which

suffers from edge effects, and our perfect simulation algorithm, which solves this

problem.

3.1. Approximate simulation and edge effects

The general approach for simulating a (marked or unmarked) point process is to use

a thinning algorithm such as Shedler-Lewis thinning algorithm or Ogata’s modified

thinning algorithm, see e.g. [7]. However, for a (marked or unmarked) Hawkes process,

the easiest approach is to generate it as a Poisson cluster process as in the following

algorithm.

Algorithm 1. The following steps (i)-(iii) generate a simulation of those (ti, Zi) ∈ X

with 0 ≤ ti < t+, where t+ ∈ (0,∞] is a user-specified parameter.

(i) Simulate the immigrants on [t−, t+) where t− ∈ [−∞, 0] is a user-specified

parameter.

(ii) For each such immigrant ti, simulate Zi and those (tj , Zj) ∈ Ci with ti < tj < t+.

(iii) The output is all marked points (tj , Zj) with tj ∈ [0, t+).

In principle steps (i) and (ii) are easy because the immigrants follow a Poisson

process, and because of the branching construction of clusters into Poisson processes,

cf. Section 2.2. However, ideally we should take t− = −∞, but in practice we need to

determine t− such that
∫ 0

t
−

µ(t) dt < ∞. When
∫ t

−

−∞
µ(t) dt > 0, Algorithm 1 suffers

from edge effects, since clusters generated by immigrants before time t− may contain

offspring in [0, t+). In [17] this algorithm is investigated much more thoroughly and

various measures for the edge effects are introduced; in the rest of this article, however,

we will consider how to simulate the marked Hawkes process without edge effects.
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3.2. Description of perfect simulation algorithm

Assuming for the moment that F (the c.d.f. for the length of a cluster) is known,

the following algorithm for perfect simulation of the marked Hawkes process is similar

to the simulation of Poisson cluster processes without edge effects given in Brix and

Kendall [5]; see also [16, 20].

Algorithm 2. Let I1 be the point process of immigrants on [0, t+), and let I2 be the

point process of immigrants ti < 0 such that {(tj , Zj) ∈ Ci : tj ∈ [0,∞)} 6= ∅.

(i) Simulate I1 as a Poisson process with intensity function λ1(t) = µ(t) on [0, t+).

(ii) For each ti ∈ I1, simulate Zi and those (tj , Zj) ∈ Ci with ti < tj < t+.

(iii) Simulate I2 as a Poisson process with intensity function λ2(t) = (1−F (−t))µ(t)

on (−∞, 0).

(iv) For each ti ∈ I2, simulate Zi and {(tj , Zj) ∈ Ci : tj ∈ [0, t+)} conditional on that

{(tj , Zj) ∈ Ci : tj ∈ [0,∞)} 6= ∅.

(v) The output is all marked points from (i), (ii), and (iv).

Remark 1. In steps (i) and (ii) of Algorithm 2, we use Algorithm 1 (with t− = 0). In

step (iv), it is not obvious how to construct an elegant approach ensuring that at least

one point will fall after 0. Instead we use a simple rejection sampler: we repeatedly

simulate Zi from Q and the successive generations of offspring tj to ti (together with

their marks Zj) until there is at least one event of Ci after time 0.

The key point is how to simulate I2 in step (iii), since this requires the knowledge of

F , which is unknown on closed from (Remark 3, Section 4.1). In Section 4 we address

this problem, and in Section 5 we construct an algorithm for simulating I2. In practice

we must require that I2 is (almost surely) finite or equivalently that

∫ 0

−∞

(1 − F (−t))µ(t) dt < ∞. (9)

In the case where µ(t) is bounded, (9) is satisfied if supt≥0 µ(t) EL < ∞. A condition

for finiteness of EL is established in Lemma 1 and Remark 2 below. �

Proposition 1. The output of Algorithm 2 follows the distribution of the marked

Hawkes process.
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Proof. The immigrant process minus I1 ∪ I2 generates clusters with no events in

[0, t+). Since I1 is the immigrants on [0, t+), it follows directly that I1 is a Poisson

process with intensity λ1(t) = µ(t) on [0, t+). Since I2 is those immigrants on (−∞, 0)

with offspring after 0, I2 can be viewed as an independent thinning of the immigrant

process with retention probability p(t) = 1 − F (−t), and thus I2 is a Poisson process

with intensity λ2(t) = (1 − F (−t))µ(t). Since I1 and I2 are independent, it follows

from Section 2.2 that {Ci : ti ∈ I1} and {Ci : ti ∈ I2} are independent. Viewing the

marked Hawkes process as a Poisson cluster process, it follows from Remark 1 that the

clusters are generated in the right way in (ii) and (iv) when we only want to sample

those marked points (tj , Zj) with tj ∈ [0, t+). Thus Algorithm 2 is correct. �

Using a notation as in Section 2.3, the following lemma generalises and sharpens a

result in [13] about the mean length of a cluster.

Lemma 1. We have that

1

Ee−ν
E
[

(1 − e−ν)E[R|Z]
]

≤ EL ≤
ν̄

1 − ν̄
ER̄. (10)

Proof. Consider a cluster starting with an immigrant at time t0 = 0, with mark

Z0 = Z, cf. Section 2.2. For tj ∈ G1, let Rj denote the distance from tj to 0, and Lj the

length of the total offspring Cj process started by tj . Then L = max{Rj+Lj : tj ∈ G1},

so if we condition on Z, and let Rj,z be distributed as Rj conditional on Z = z, then

EL = EE[L|Z] = E

[

∞
∑

i=1

e−ννi

i!
E [max{Rj,Z + Lj : j = 1, . . . , i}]

]

. (11)

To obtain the upper inequality observe that

EL ≤ E





∞
∑

i=1

e−ννi

i!
E





i
∑

j=1

(Rj,Z + Lj)







 = E[νE[R|Z]] + ν̄EL,

where we have used that the Lj are identically distributed and has the same distribution

as L because of the self-similarity property (Section 2.2), and that the Rj are identically

distributed when conditioned on Z. Hence

EL ≤
1

1 − ν̄
E[νE[R|Z]] =

1

1 − ν̄
E

[
∫ ∞

0

sγ(s, Z)ds

]

=
ν̄

1 − ν̄
ER̄,

which verifies the upper inequality. Finally, by (11),

EL ≥ E

[

∞
∑

i=1

e−ννi

i!
(E[R|Z] + EL)

]

= E
[

(1 − e−ν)E[R|Z]
]

+ E[1 − e−ν ]EL,



12 J. MØLLER & J. G. RASMUSSEN

which reduces to the lower inequality. �

Remark 2. If either ν or γ/ν is independent of Z (in other words, either the number or

the locations of offspring in an offspring process are independent of the mark associated

to the generic event), then it is easily proven that h̄ = h and thus (10) reduces to

(

1

Ee−ν
− 1

)

ER ≤ EL ≤
ν̄

1 − ν̄
ER.

Consequently, EL < ∞ if and only if ER < ∞. This immediately shows that EL < ∞

in Example 1 and EL = ∞ in Example 3. In Example 2 when Z is exponentially

distributed with mean 1/β, (10) becomes α(α + 2)/(2(α + 1)β) ≤ EL ≤ α/(β(1− α)),

so in this case EL < ∞. Not surprisingly, apart from small values of α ∈ (0, 1), the

bounds are rather poor and of little use except in establishing finiteness of EL. �

4. The distribution of the length of a cluster

In this section we derive various distributional results concerning the length L of

a cluster. The results are needed in Section 5 to complete step (iii) in Algorithm 2;

however, many of the results are also of own interest.

4.1. An integral equation for F

Below in Proposition 2 an integral equation for F is derived, and it is discussed how

to approximate F by numerical methods, using a certain recursion. Proposition 2 is

a generalisation of Theorem 5 in Hawkes and Oakes [13], which is proved using void

probabilities obtained from a general result for the probability generating functional

for an unmarked Hawkes process. However, as Daley and Vere-Jones [7] point out, the

probability generating functional for the marked Hawkes process is difficult to obtain.

We give a direct proof based on void probabilities.

For n ∈ N0, let 1n denote the c.d.f. for the length of a cluster when all events of

generation n+1, n+2, . . . are removed (it becomes clear in Section 4.2 why we use the

notation 1n). Clearly, 1n is decreasing in n, 1n → F pointwise as n → ∞, and

10(t) = 1, t ≥ 0. (12)

Furthermore, let C denote the class of Borel functions f : [0,∞) 7→ [0, 1]. For f ∈ C,
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define ϕ(f) ∈ C by

ϕ(f)(t) = E

[

exp

(

−ν +

∫ t

0

f(t − s)γ(s, Z) ds

)]

, t ≥ 0. (13)

Proposition 2. We have that

1n = ϕ(1n−1), n ∈ N, (14)

and

F = ϕ(F ). (15)

Proof. As in the proof of Lemma 1, we can consider a cluster started at time t0 = 0

with associated marks Z0 = Z. For fixed t ≥ 0 and n ∈ N, split Φ(0) into three point

processes Φ1, Φ2, Φ3: Φ1 consists of those first generation offspring ti ∈ Φ(0) ∩ [0, t)

which do not generate events of generation n− 1 or lower with respect to ti on [t,∞);

Φ2 = (Φ(0) ∩ [0, t)) \ Φ1 consists of the remaining first generation offspring on [0, t);

and Φ3 = Φ(0) ∩ [t,∞) are the first generation offspring on [t,∞). Conditional on

Z, we have that Φ1, Φ2, and Φ3 are independent Poisson processes with intensity

functions λ1(s) = γ(s, Z)Fn−1(t−s) on [0, t), λ2(s) = γ(s, Z)(1−Fn−1(t−s)) on [0, t),

and λ3(s) = γ(s, Z) on [t,∞), respectively. This follows by an independent thinning

argument, since conditional on Gn (the n-th generation of offspring in C0), the processes

Cj − tj with tj ∈ Gn are i.i.d. and distributed as C0 (this is the self-similarity property

from Section 2.2). Consequently,

1n(t) = E[P(Φ2 = ∅|Z)P(Φ3 = ∅|Z)] = E exp

(

−

∫ t

0

λ2(s, Z) ds −

∫ ∞

t

λ3(s, Z) ds

)

which reduces to (14). Taking the limit as n → ∞ on both sides of (14), we obtain

(15) by monotone convergence, since 1n(t) ≤ 1n−1(t) for all t ≥ 0 and n ∈ N. �

Remark 3. As illustrated in the following example, we have been unsuccessful in using

(15) to obtain a closed form expression for F even for simple choices of γ. Fortunately,

the recursion (14) provides a useful numerical approximation to F . As the integral in

(13) with f = 1n−1 quickly becomes difficult to evaluate analytically as n increases,

we compute the integral numerically, using a quadrature rule. �

Example 4. (Unmarked process) Consider Example 1 with β = 1. Then (15) is

equivalent to
∫ t

0

F (s)es ds =
et

α
ln(eαF (t))
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which is not analytically solvable. �

4.2. Monotonicity properties and convergence results

As established in Theorem 1 below, many other approximations of F than 1n exist,

and the rate of convergence may be geometric with respect to different norms. First we

notice that certain monotonicity properties are fulfilled by ϕ, where we for functions f :

[0,∞) 7→ [0, 1] set f0 = ϕ[0](f) = f and define recursively fn = ϕ[n](f) = ϕ(fn−1), n ∈

N. Note that Fn = F for all n ∈ N0. As 1n = ϕ[n](1) is decreasing towards the c.d.f.

F , cases where G is a c.d.f. and Gn increases to F are of particular interest.

Lemma 2. For any f, g ∈ C, we have that

f ≤ g ⇒ fn ≤ gn, n ∈ N, (16)

f ≤ ϕ(f) ⇒ fn is non-decreasing in n, (17)

f ≥ ϕ(f) ⇒ fn is non-increasing in n. (18)

Proof. We obtain immediately (16) from (13) when n = 1, whereby (16) follows by

induction. Thereby (17) and (18) follow. �

Theorem 1. With respect to the supremum norm ‖f‖∞ = supt≥0 |f(t)|, ϕ is a contrac-

tion on C, that is, for all f, g ∈ C and n ∈ N, we have that fn, gn ∈ C and

‖ϕ(f) − ϕ(g)‖∞ ≤ ν̄‖f − g‖∞. (19)

Further, F is the unique fixpoint,

‖F − fn‖∞ → 0 as n → ∞, (20)

and

‖F − fn‖∞ ≤
ν̄n

1 − ν̄
‖ϕ(f) − f‖∞, (21)

where ‖ϕ(f) − f‖∞ ≤ 1. Furthermore, if f ≤ ϕ(f) (or f ≥ ϕ(f)), then fn converges

to F from below (above).

Proof. Let f, g ∈ C. Recall that by the mean value theorem (e.g. Theorem 5.11 in

[1]), for any real numbers x and y, ex − ey = (x − y)ez(x,y), where z(x, y) is a real

number between x and y. Thus by (13),

‖ϕ(f) − ϕ(g)‖∞ = sup
t≥0

∣

∣

∣

∣

E

[

e−νec(t,f,g)

∫ t

0

(f(t − s) − g(t − s))γ(s, Z)ds

]∣

∣

∣

∣

(22)
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where c(t, f, g) is random variable between
∫ t

0
f(t−s)γ(s, Z) ds and

∫ t

0
g(t−s)γ(s, Z) ds.

Since f, g ≤ 1, we obtain ec(t,f,g) ≤ eν , cf. (2). Consequently,

‖ϕ(f) − ϕ(g)‖∞ ≤ sup
t≥0

∣

∣

∣

∣

E

[
∫ t

0

(f(t − s) − g(t − s))γ(s, Z) ds

]
∣

∣

∣

∣

≤ E

[
∫ ∞

0

‖f − g‖∞ γ(s, Z) ds

]

= ν̄ ‖f − g‖∞.

Thereby (19) is verified. Since C is complete (see e.g. Theorem 3.11 in [25]), it follows

from the fixpoint theorem for contractions (see e.g. Theorem 4.48 in [1]) that the

contraction has a unique fixpoint. By (15), this is F .

Since f ∈ C implies ϕ(f) ∈ C, we get by induction that fn ∈ C. Hence, using (15),

(19) and induction,

‖fn −F‖∞ = ‖ϕ(fn−1)−ϕ(F )‖∞ ≤ ν̄‖fn−1 −F‖∞ ≤ ν̄n‖f −F‖∞, n ∈ N. (23)

Since ν̄ < 1, (20) is obtained.

For similar reasons as in (23),

‖fn − fn−1‖∞ ≤ ν̄n−1‖f1 − f‖∞, n ∈ N. (24)

Further, by (20),

‖F − f‖∞ = lim
m→∞

‖fm − f‖∞.

So by the triangle inequality and (24),

‖F − f‖∞ ≤ lim
m→∞

(

‖f1 − f‖∞ + ‖f2 − f1‖∞ + · · · + ‖fm − fm−1‖∞
)

≤ lim
m→∞

‖f1 − f‖∞
(

1 + ν̄ + · · · + ν̄m−1
)

= ‖f1 − f‖∞/
(

1 − ν̄
)

,

cf. (2). Combining this with (23), we obtain (21). Finally, if f ≤ ϕ(f) (or f ≥ ϕ(f))

then by (17) (or (18)) and (20), fn converges from below (or above). �

Similar results to those in Theorem 1 but for the L1-norm are established in [17].

The following remark and proposition show how to find upper and lower bounds of F

in many cases.

Remark 4. Consider a function f ∈ C. The condition f ≤ ϕ(f) or f ≥ ϕ(f) is

satisfied for the extreme cases f = 0 or f = 1. The upper bound f = 1 is useful

in the following sections, but the lower bound f = 0 is a too small function for our
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purposes; if we require that EL < ∞, cf. Remarks 1 (in fact we use only f = 0 when

producing the right plot in Figure 4). To obtain a more useful lower bound, observe

that f ≤ ϕ(f) implies f ≤ F < 1, cf. (5) and Theorem 1. If f < 1, then a sufficient

condition for f ≤ ϕ(f) is

1

ν̄
≥

∫ t

0
(1 − f(t − s))h̄(s) ds +

∫∞

t
h̄(s) ds

1 − f(t)
, t ≥ 0. (25)

This follows readily from (7) and (13), using that ex ≥ 1 + x.

The case where f in (25) is closest to F happens when f is a c.d.f. G and we have

equality in (25). Equivalently, G satisfies the renewal equation

G(t) = 1 − ν̄ + ν̄

∫ t

0

G(t − s)h̄(s) ds, t ≥ 0,

which has the unique solution

G(t) = 1 − ν̄ +
∞
∑

n=1

(1 − ν̄)ν̄n

∫ t

0

h̄∗n(s) ds, t ≥ 0, (26)

where ∗n denotes convolution n times, cf. Theorem IV2.4 in [2]. In other words, G is

the c.d.f. of R̄1 + · · · + R̄K (setting R̄1 + · · · + R̄K = 0 if K = 0), where K, R̄1, R̄2, . . .

are independent random variables, each R̄i has density h̄, and K follows a geometric

density (1 − ν̄)ν̄n. Interestingly, this geometric density is equal to ESn/ES, cf. (4).

The next proposition shows that in many situations G ≤ ϕ(G) when G is an

exponential c.d.f. with a sufficiently large mean. In such cases F has no heavier tails

than such an exponential distribution. �

Denote by

L(θ) =

∫ ∞

0

eθth̄(t) dt, θ ∈ R,

the Laplace transform of h̄.

Proposition 3. If G(t) = 1 − e−θt for t ≥ 0, where θ > 0 and L(θ) ≤ 1/ν̄, then

G ≤ ϕ(G).

Proof. Inserting f = G into the right side of (25) we obtain
∫ t

0

eθsh̄(s) ds + eθt

∫ ∞

t

h̄(s) ds.

Since this is an increasing function of t > 0, (25) is satisfied if and only if L(θ) ≤ 1/ν̄.

�
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Note that Proposition 3 always applies for sufficiently small θ > 0 except in the case

where h̄ is heavy-tailed in the sense that L(θ) = ∞ for all θ > 0.

4.3. Examples

For Examples 5 and 6 below, we let

G(t) = 1 − e−θt, t ≥ 0, (27)

be the exponential c.d.f. with parameter θ > 0.

Example 5. (Unmarked process) For the case in Example 1, L(θ) = β/(β−θ) if θ < β,

and L(θ) = ∞ otherwise. Interestingly, for “the best choice” θ = L−1(1/ν̄) = β(1−α),

(27) becomes the c.d.f. for R times ES, which is easily seen to be the same as the c.d.f.

in (26).

Figure 4 (at left) shows 1n and Gn when θ = β(1 − α) and (α, β) = (0.9, 1). The

convergence of 1n and Gn (with respect to ‖ · ‖∞) and the approximate form of F

are clearly visible. Since G is a c.d.f. and Gn+1 ≥ Gn, we have that Gn is a c.d.f.

Figure 4 (at middle) shows the density F ′(t)/(1 − F (0)) (t > 0) approximated by

[1′n(t)/(1−1n(0))+G′
n(t)/(1−Gn(0))]/2 when n = 50 (in which case 1′n(t)/(1−1n(0))

and G′
n(t)/(1−Gn(0)) are effectively equal). As shown in the plot, the density is close

to the exponential density with the same mean, but the tail is slightly thicker. �

Example 6. (Birth-death process) For the case in Example 2,

L(θ) = E

∫ Z

0

eθs/EZ ds =
LZ(θ) − 1

θEZ

where LZ(θ) = EeθZ is the Laplace transform for Z. In the special case where Z is

exponentially distributed with mean 1/β, L(θ) = LZ(θ) = β/(β − θ) is of the same

form as in Example 5. Plots of 1n, Gn, and [1′n/(1 − 1n(0)) + G′
n/(1 − Gn(0))]/2 for

n = 0, 5, . . . , 50 and (α, β) = (0.9, 1) are similar to those in Figure 4 (at right and

middle) and are therefore omitted. �

Example 7. (A heavy-tailed distribution for L) For the case in Example 3, Proposi-

tion 3 does not apply as L(θ) = ∞ for all θ > 0. The c.d.f. in (26) is not known on

closed form, since the convolutions are not tractable (in fact this is the case when h̄

specifies any known heavy-tailed distribution, including the Pareto, Weibull, lognormal
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Figure 4: Left: 1n and Gn for n = 0, 5, . . . , 50 in the unmarked case with α = 0.9 and β = 1

(see Example 5); 150 and G50 are shown in black to illustrate the approximate form of F

whereas the other curves are gray. Middle: The density [1′

n
/(1− 1n(0)) + G′

n
/(1−Gn(0))]/2

when n = 50 (solid line) and the exponential density with the same mean (dashed line) Right:

as left but for Example 7 with α = 0.9 and β = 1 using 1n and 0n as approximations of F .

or loggamma distribution). Nonetheless, it is still possible to get an idea of what

F looks like: Figure 4 (at right) shows 1n and 0n for n = 0, 5, . . . , 50 in the case

(α, β) = (0.9, 1). As in Examples 5 and 6, the convergence of 1n and Gn (where now

G = 0) and the approximate form of F are clearly visible. However, as indicated in

Figure 4 (at right) and verified in [17], limt→0 Gn(t) < 1 when G = 0, so Gn is not a

c.d.f. �

5. Simulation of I2

To complete the perfect simulation algorithm (Algorithm 2 in Section 3), we need

a useful way of simulating I2. Our procedure is based on a dominating process and

the use of coupled upper and lower processes in a similar spirit as in the dominated

coupling from the past algorithm in Kendall and Møller [15].

Suppose that f ∈ C is on a closed form, f ≤ ϕ(f), and (9) is satisfied when

we replace F by f (situations where these requirements are fulfilled are considered

in Sections 3.2, 4.2 and 4.3). Particularly, if µ is constant and f is a c.d.f., (9)

means that f has a finite mean. Now, for n ∈ N0, let Un and Ln denote Poisson

processes on (−∞, 0) with intensity functions λu
n(t) = (1 − fn(−t))µ(t) and λl

n(t) =

(1 − 1n(−t))µ(t), respectively. By Theorem 1, λu
n is non-increasing and λl

n is non-
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decreasing in n, and they both converge to λ2 (geometrically fast with respect to

the supremum norm). Consequently, we can use independent thinning to obtain the

following sandwiching/funneling property, cf. [15]:

∅ = L0 ⊆ L1 ⊆ L2 ⊆ · · · ⊆ I2 ⊆ · · · ⊆ U2 ⊆ U1 ⊆ U0. (28)

The details are given by the following algorithm.

Algorithm 3. Simulation of I2:

(i) Generate a realisation {(t1, Z1), . . . , (tk, Zk)} of U0, where t1 < . . . < tk.

(ii) If U0 = ∅, then return I2 = ∅ and stop, else generate independent uniform

numbers W1, . . . , Wk on [0, 1] (independently of U0), and set n = 1.

(iii) For j = 1, . . . , k, assign (tj , Zj) to Ln respective Un if Wjλ
u
0 (tj) ≤ λl

n(tj)

respective Wjλ
u
0 (tj) ≤ λu

n(tj).

(iv) If Un = Ln, then return I2 = Ln and stop, else increase n by 1 and repeat steps

(iii)–(iv).

Proposition 4. Algorithm 3 works correctly and terminates almost surely within finite

time.

Proof. To see this, imagine no matter if U0 = ∅ in step (ii) or Un = Ln in step

(iv), we continue to generate (U1, L1), (U2, L2), etc. Further, add an extra step: For

j = 1, . . . , k, assign (tj , Zj) to I2 if and only if Wjλ
u
n(tj) ≤ λ2(tj). Then clearly,

because of the convergence properties of λu
n and λl

n (see the discussion above), (28) is

satisfied and conditional on t1, . . . , tk,

P(Ln 6= Un ∀n ∈ N0) ≤
k
∑

j=1

lim
n→∞

P(Wjλ
u
0 (tj) ≤ λu

n(tj), Wjλ
u
0 (tj) > λl

n(tj))

=

k
∑

j=1

P(λ2(tj) < Wjλ
u
0 (tj) ≤ λ2(tj)) = 0.

Thus almost surely Algorithm 3 terminates within finite time and the output equals

I2. �

Remark 5. We compute 1n and fn numerically, using a quadrature rule, cf. Remark 3.

After step (i) in Algorithm 3, we let the last quadrature point be given by −t1 (since
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we do not need to calculate 1n(t) and fn(t) for t > −t1). Since we have to calculate

1n and fn recursively for all n = 0, 1, 2, . . . until Algorithm 3 terminates, there is no

advantage in using a doubling scheme for n like in the Propp-Wilson algorithm [23]. �

Example 8. (Birth-death process) We have checked our computer code for Algo-

rithms 2 and 3 by comparing with results produced by another perfect simulation

algorithm: Consider the case in Example 2 when µ(t) = µ is constant and Z is

exponentially distributed with mean 1/β. If N denotes the number of events alive

at time 0, we have the following detailed balance condition for its equilibrium density

πn:

πn(µ + αβn) = πn+1β(n + 1), n ∈ N0.

This density is well-defined, since limn→∞ πn+1/πn = α < 1. Now, choose m ∈ N0

and ǫ ≥ 0 such that a = α + ǫ < 1 and πn+1/πn ≤ a whenever n ≥ m. If µ ≤ αβ, we

can take ǫ = m = 0; otherwise we can use m ≥ (µ − αβ)/(βǫ) for some ǫ > 0. Define

an unnormalised density π′
n, n ∈ N0, by π′

n = πn/π0 if n ≤ m, and π′
n = an−mπm/π0

otherwise. We can easily sample from π′
n by inversion, cf. [24], since we can calculate

∞
∑

0

π′
n =

m
∑

0

πn/π0 +
a

1 − a
πm/π0.

Then, since π′
n ≥ πn/π0, we can sample N from πn by rejection sampling, cf. [24].

Furthermore, conditional on N = n, we generate n independent marks Z ′
1, . . . , Z

′
n

which are exponentially distributed with mean 1/β (here we exploit the memoryless

property of the exponential distribution). Finally, we simulate the marked Hawkes

process with events in (0, t+], using the conditional intensity

λ′(t) = µ + αβ

(

n
∑

i=1

1[t < Z ′
i] +

∑

0<ti<t

1[t < ti + Zi]

)

.

We have implemented this algorithm for comparison with our algorithm. Not

surprisingly this algorithm is a lot faster than our perfect simulation algorithm (roughly

1200 times as fast in the case α = 0.9, β = µ = 1, and t+ = 10), since it exploits the

fact that we know the stationary distribution in this special case. �
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6. Extensions and open problems

Except for the heavy-tailed case, our perfect simulation algorithm is feasible in the

examples we have considered. In heavy-tailed cases, we can only say something about

the approximate form of F , cf. Example 7.

Many of our results and algorithms can be modified if we slightly extend the

definition in Section 1 of a marked Hawkes process as follows: For any event ti with

associated mark Zi, let ni denote the number of (first generation) offspring generated

by (ti, Zi), and suppose that ni conditional on Zi is not necessarily Poisson distributed,

but ni is still conditionally independent of ti and the previous history. A particular

simple case occurs when ni is either 1 or 0, where p̄ = EP(ni = 1|Zi) is assumed to

be strictly between 0 and 1 (here p̄ plays a similar role as ν̄ introduced in Section 4).

Then we redefine ϕ by

ϕ(f)(t) = 1 − p̄ + p̄

∫ t

0

f(t − s)h̄(s) ds

where now

h̄(s) = E(p(Z)h(s, Z))/p̄.

Since ϕ now is linear, the situation is much simpler. For example, F is given by G in

(26) (with ν̄ replaced by p̄).

For applications such as in seismology (see e.g. [22]), extensions of our results

and algorithms to the case of predictable marks are both important and challenging.

However, F becomes much more complicated, and it seems e.g. hard to extend the

proof in Proposition 1 because the self-similarity property (Section 2.2) is lost.

Extensions to non-linear Hawkes processes [3, 7] would also be interesting. Again

things become complicated, since a non-linear Hawkes process is not even a Poisson

cluster process.

Another extension of practical relevance is to consider a non-Poisson immigrant

process, e.g. a Markov or Cox process. The results in Section 4 do not depend on the

choice of immigrant process, and the straightforward simulation algorithm (Algorithm 1

in Section 3.1) applies provided it is feasible to simulate the immigrants on [t−, t+).

However, the perfect simulation algorithm relies much on the assumption that the

immigrant process is Poisson.
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Finally, we notice that it would be interesting to extend our ideas to spatial Hawkes

processes, cf. [18] and [19].
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