

Aalborg Universitet

Bæreevne af betonvægselementer

Jensen, Bjarne Chr.; Sørensen, John Dalsgaard

Publication date: 2007

Document Version Også kaldet Forlagets PDF

Link to publication from Aalborg University

Citation for published version (APA): Jensen, B. C., & Sørensen, J. D. (2007). *Bæreevne af betonvægselementer*. Syddansk Universitet : Det Tekniske Fakultet : Institut for Industri.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Syddansk Universitet

Bæreevne af betonvægselementer

Bjarne Chr. Jensen John Dalsgaard Sørensen

> Skriftserie Rapport nr. 1 2007 ISBN 978-87-92185-00-6

Byggeri Fakultet Š nstitut for Industri et Tekniske

Bæreevne af betonvægselementer

Bjarne Chr. Jensen, Syddansk Universitet John Dalsgaard Sørensen, Aalborg Universitet

13. august 2007

Indhold

1. Introduktion	3
2. Symboler	3
3. Beregningsmetoder	5
3.1 Centralt belastede vægge	5
3.1.1 Uarmerede vægge efter DS 411	5
3.1.2 Uarmerede vægge efter ny formel	6
3.1.3 Hensyntagen til armering	6
3.2 Excentrisk og tværbelastede vægge	7
3.2.1 Uarmerede vægge efter DS 411	7
3.2.2 Uarmerede vægge efter ny formel	8
3.2.3 Hensyntagen til armering	8
4. Centralt belastede uarmerede vægge	9
4.1 Forsøgsresultater	9
4.2 Bæreevner med beregningsmodeller	11
4.2.1 Centralt belastede vægge – DS411	11
4.2.2 Centralt belastede vægge – DS411 uden forsigtig E-modul	12
4.2.3 Centralt belastede vægge – ny formel	14
4.2.4 Kommentarerer for beregningsmodeller for centralt belastede vægge	15
4.3 Statistisk vurdering af resultater	15
5. Excentrisk belastede uarmerede vægge	19
5.1 Forsøgsresultater	19
5.2 Bæreevner med beregningsmodeller	20
5.2.1 Excentrisk belastede vægge – DS411	20
5.2.2 Excentrisk belastede vægge – ny formel	21
5.3 Statistisk vurdering af resultater	24
6. Tværbelastede armerede søjler	26
6.1 Forsøgsresultater	26
6.2 Bæreevner med beregningsmodeller	27
6.2.1 Excentrisk belastede vægge – DS411	27
6.2.2 Tværbelastede vægge – ny formel	28
6.3 Statistisk vurdering af resultater	29
7. Sammenfatning af ny beregningsmetode	30
7.1 Slankhedstal $l_s/i < 95$	30
7.2 Slankhedstal $95 \le l_S/i \le 125$	32
7.3 Slankhedstal $125 < l_s/i$	33
7.4 Sammenfatning	34
8. Konklusion	35
9. Referencer	36
8. Acknowledgements	36
9. Summary	36
Anneks A - Statistisk vurdering af bæreevnemodeller	38

1. Introduktion

Nærværende rapport behandler bæreevnen af uarmerede betonvægselementer.

Baggrunden for arbejdet er en erkendelse af, at den beregningsmetode, der findes i den danske betonnorm DS 411, er for konservativ i forhold til de betontyper der fremstilles i dag.

I rapporten anbefales en ny beregningsmetode for uarmerede betonvægge. Såvel den nye som den eksisterende metode fra DS 411 sammenlignes med nye forsøg udført ved Aalborg Universitet. Sammenligningen er udført under anvendelse af den statistiske metode for analyse af beregningsmodeller beskrevet i den nye danske Norm for projekteringsgrundlag for konstruktioner, DS409:2006 og i Eurocoden Basis of Design, EN 1990.

Det betyder, at de anbefalede beregningsformler - med de angivne begrænsninger - i dag kan anvendes i overensstemmelse med det nye danske normsystem (2006), og med indførelse af Eurocodes som danske normer også kan anvendes i overensstemmelse med Eurocodes sammen med de danske nationale annekser.

2. Symboler

Som hovedregel er anvendt symboler som de anvendes i de danske normer DS 409:2006 og DS 411:1999.

Blandt de anvendte symboler skal her nævnes:

- A Tværsnitsareal
- A_c Betonareal
- A_s Armeringsareal
- E Elasticitetsmodul
- *E*_{c0} Betons begyndelseselasticitetsmodul
- E_{0cr} Betons begyndelseselasticitetsmodul ved stabilitetsberegninger jf. DS 411
- E_c Betons elasticitetsmodul
- *E_s* Armerings elasticitetsmodul
- E_{σ} Tangentelasticitetskoefficienten ved spændingen σ
- I Inertimoment
- *N_{cr}* Kritisk normalkraft
- N_{norm} Bæreevne efter DS 411
- N_{rev} Bæreevne efter DS 411 uden reduktion af E
- N_{ny} Bæreevne efter ny formel
- N_{test} Målt bæreevne
- V_{f_c} Variationskoefficient for betontrykstyrke
- V_{δ} Variationskoefficient for estimeringsfejl med beregningsmodel
- b Vægbredde
- e Excentricitet
- f_c Betontrykstyrke
- f_{ck} Karakteristisk betontrykstyrke
- f_{cm} Målt middeltrykstyrke for beton
- f_{ctm} Målt middeltrækstyrke for beton
- f_y Armeringstrækstyrke

- h Vægtykkelse
- h' Regningsmæssig vægtykkelse under hensyntagen til excentriciteter
- *i* Inertiradius
- *ls* Søjlelængde
- *n* Antal forsøg
- r_k Karakteristisk bæreevne beregnet fra forsøgsdata
- γ_M^{norm} Partialkoefficient fra norm
- γ_{M}^{data} Partialkoefficient med $V_{f_{c}}$ og V_{r} bestemt vha. DS409:2006
- σ Normalspænding
- σ_{cr} Kritisk normalspænding
- σ_s Armeringsspænding

3. Beregningsmetoder

3.1 Centralt belastede vægge

3.1.1 Uarmerede vægge efter DS 411

Centralt belastede uarmerede søjler og vægge beregnes efter DS 411 af

$$N_{cr} = \sigma_{cr} A_c \tag{3.1}$$

hvor

$$\sigma_{cr} = \frac{f_c}{1 + \frac{f_c}{\pi^2 E_{0cr}} \left(\frac{l_s}{i}\right)^2}$$
(3.2)

Formlen er fremkommet af formlen for lineærelastiske søjler, hvor den kritiske spænding svarende til Eulerformlen er

$$\sigma_{cr} = \frac{\pi^2 E}{\left(\frac{l_s}{i}\right)^2} \tag{3.3}$$

Ved at anvende tangenthældningen E_{σ} i stedet for elasticitetsmodulen E i (3.3) kan man finde den værdi af spændingen, hvor væggen bliver ustabil. Efter betonnormen er

$$E_{\sigma} = E_{c0} \left(1 - \frac{\sigma}{f_c} \right) \tag{3.4}$$

Indsættes denne værdi i (3.3) i stedet for E og sættes $\sigma = \sigma_{cr}$ findes (3.2), der kaldes Ritters formel.

DS 411 angiver følgende begyndelseselasticitetsmodul:

$$E_{c0} = 51000 \frac{f_c}{f_c + 13} \tag{3.5}$$

Betonnormen foreskriver, at man ved stabilitetsberegninger kun må anvende 75% af den fundne værdi, dog maksimalt $1000 \cdot f_c$, dvs_:

$$E_{0cr} = \begin{cases} 0.75 \cdot E_{c0} \\ 1000 \cdot f_{c} \end{cases}$$
(3.6)

I udtrykket for den kritiske spænding indgår også inertiradius, der for rektangulære tværsnit med højden h er bestemt af

$$i = \sqrt{\frac{I}{A}} = \frac{h}{\sqrt{12}} \tag{3.7}$$

Betonnormen foreskriver ligeledes, at der til uarmeret beton maksimalt må regnes med en styrke på betonen til $f_{ck} = 25MPa$.

3.1.2 Uarmerede vægge efter ny formel

I stedet for Ritterformlen anvendes følgende sammenhæng mellem tangenselasticitetsmodulet og begyndelseselasticitetsmodulet, svarende til at vi betragter betonen som værende mindre blød end den gøres i DS 411.

$$E_{\sigma} = E_{c0} \sqrt{1 - \frac{\sigma}{f_c}}$$
(3.8)

Indsættes denne værdi for E i formlen for den lineærelastiske bæreevne (3.3) og løses for $\sigma = \sigma_{cr}$ findes den kritiske spænding nu til

$$\sigma_{cr} = \frac{f_c}{\sqrt{1 + \left(\frac{f_c}{\pi^2 E_{c0}} \left(\frac{l_s}{i}\right)^2\right)^2}}$$
(3.9)

For E_{c0} anvendes den værdi, som findes efter DS 411s formel, dvs. (3.5) og bæreevnen findes herefter af (3.1).

3.1.3 Hensyntagen til armering

Normalt beregnes betonens bidrag, dvs. (3.2) eller (3.9) uden at tage hensyn til armeringen. Herefter bestemmes tøjningen i betonen og med samme tøjning i beton og armering kan armeringens spænding σ_s findes og bæreevnen findes nu ved at addere beton. og armeringsbidrag, dvs.

$$N_{cr} = \sigma_{cr}A_c + \sigma_s A_s = \sigma_{cr}A_c + \alpha\sigma_{cr}A_s$$
(3.10)

Hvor α er forholdet mellem armeringens og betonens elasticitetsmoduler

$$\alpha = \frac{E_s}{E_c} \tag{3.11}$$

hvor $E_s = 200000 MPa$.

For betonen anvendes normalt den elasticitetsmodul, der svarer til beregningsmetode B for bøjning efter DS 411, dvs.

$$E_c = 500 f_c \tag{3.12}$$

Når (3.12) anvendes finder man en for stor tøjning i armeringen ved en given værdi af σ_{cr} , dvs. man anvender et lidt for stort bidrag fra armeringen, hvilket i nogen grad opvejes af at σ_{cr} er fundet uden hensyntagen til armeringen, dvs. der anvendes en lidt for lille en værdi af σ_{cr} .

Det bemærkes, at der er tale om centralt belastede søjler og vægge, derfor baseres formlerne for armeringens bidrag sig på, at armering er placeret symmetrisk i søjle eller væg for ikke at give et excentrisk bidrag.

I "uarmerede" betonelementvægge anvendes normalt lidt armering af hensyn til transport mv. Armeringens indflydelse på bæreevnen betyder ganske lidt og den medregnes normalt ikke. Ved behandling af forsøgene i denne rapport er armeringens bidrag dog medregnet for centralt belastede vægge, selv om de også her kun giver et beskedent bidrag til bæreevnen.

3.2 Excentrisk og tværbelastede vægge

Ν

e

h/2-e

Hvis det antages, at der ikke regnes med trækstyrker i betonen i uarmerede vægelementer, kan man for små excentriciteter betragte væggen som centralt belastet, idet der kun medregnes det areal, der er symmetrisk placeret omkring normalkraftens angrebspunkt, dvs. der regnes med en vægtykkelse på h' på

$$h' = h - 2e \tag{3.13}$$

h

Formlerne for centralt belastede uarmerede vægge kan derfor anvendes, hvis arealet A_c i formlerne erstattes med det trykkede areal A'_c .

$$A'_{c} = b(h - 2e)$$
hvor b er væggens bredde.
(3.14)

For *i* skal i formlerne for den kritiske spænding σ_{cr} anvendes

$$i = \frac{h'}{\sqrt{12}} = \frac{h - 2e}{\sqrt{12}}$$
(3.15)

3.2.1 Uarmerede vægge efter DS 411

I betonnormen findes en formel for bæreevne af excentrisk belastede vægge, der giver lidt større bæreevne, end fremgangsmåden beskrevet foran, dvs. i stedet for at anvende Ritters formel på tværsnittet symmetrisk om lasten. Det bemærkes at formlen kun gælder for uarmeret beton, dvs. for beton med styrker $f_{ck} \leq 25MPa$

Formlen er gengivet her, hvor søjlelængden l_s er indsat i stedet for væggens højde, der skal anvendes jf. DS 411.

$$N_{cr} = \frac{\left(1 - 2\frac{e}{h}\right)^{\nu}}{1 + 12 \cdot 10^{-4} \left(\frac{l_s}{h}\right)^2} f_c A_c$$
(3.16)

hvor

$$p = 1 + \frac{l_s}{25h}$$
(3.17)

3.2.2 Uarmerede vægge efter ny formel

Bæreevnen findes som

$$N_{cr} = \sigma_{cr} A'_{c} = \sigma_{cr} b (h - 2e)$$
hvor
$$(3.18)$$

$$\sigma_{cr} = \frac{f_c}{\sqrt{1 + \left(\frac{f_c}{\pi^2 E_{c0}} \left(\frac{l_s}{i}\right)^2\right)^2}}$$
(3.19)

idet

$$E_{c0} = 51000 \frac{f_c}{f_c + 13} \tag{3.20}$$

og

$$i = \frac{h'}{\sqrt{12}} = \frac{h - 2e}{\sqrt{12}}$$
(3.21)

3.2.3 Hensyntagen til armering

Beregningsmetoden i DS 411 giver ikke mulighed for at indregne en virkning af armering.

Anvendelse af beregningsmetoderne for centralt belastede vægge på tværsnit symmetrisk omkring lasten, giver principielt kun mulighed for at medregne armering, der ligeledes er placeret symmetrisk omkring lasten. Hvis armeringen er placeret helt udenfor det areal, der medregnes, dvs. udenfor h', er der ikke tryk i armeringen efter beregningsforudsætningerne. Hvis man derimod betragter den klassiske situation med at plane tværsnit forbliver plane, kan armeringen endda være placeret så der kommer træk i den. Det må derfor konstateres at de skitserede beregningsmetoder for excentriske og tværbelastede vægge kun kan anvendes for uarmerede vægge.

Umiddelbart ses også, at bidrag til bæreevnen fra armering placeret i midten af væggen må mindskes med øget excentricitet, idet tøjningerne i armeringen vil mindskes med øget excentricitet.

Som nævnt under centralt belastede vægge er der lidt armering i "uarmerede" betonvægselementer, men på den sikre side medregnes den ikke ved beregning af sådanne elementers bæreevne. Ved behandlingen af forsøgene i denne rapport, er der set bort fra armeringsbidraget, hvilket betragtes som acceptabelt for de excentrisk belastede forsøg, hvor dens bidrag til bæreevnen er meget beskeden, idet armeringsmængden er ganske beskeden.

4. Centralt belastede uarmerede vægge

4.1 Forsøgsresultater

I tabel 4.1 er vist resultaterne fra 20 forsøg med centralt belastede vægge. De 16 første er hentet fra Ellegaard [1], og de 4 sidste er hentet fra Ellegaard og Pilegaard Hansen [2]. Elementerne er i princippet uarmerede, men der er lidt armering i væggene, svarende til den der normalt placeres i vægge af hensyn til transport og anden håndtering af elementerne.

	Geon	netri			Beton				Armer			
	е	l_s	h	b	<i>f</i> _{cm}	<i>f</i> _{ctm}	$E_{c0,test}$	Esek	Antal	f_y	E_s	N _{test}
	mm	mm	mm	mm	MPa	MPa	MPa	MPa		MPa	MPa	kN
V1BC1	0	2770	122	250	23,2	4,59	26804	22873	2 ø6	562	202900	707
V1BC2	1	2770	123	251	23,2	4,59	26804	22873	2 ø6	562	202900	735
V8C3	3	2750	124	251	50,7	6,34	33917	31890	2 ø6	562	202900	1354
V8C4	1,5	2750	123	251	48,3	5,76	33210	31579	2 ø6	562	202900	1246
V7C5	4	2750	182	251	26,1	4,71	28318	25464	2 ø6	562	202900	1119
V7C6	0	2750	184	252	27,9	4,59	26476	23190	2 ø6	562	202900	1079
V7C7	0	2750	184	253	22,6	4,26	24766	23078	2 ø6	562	202900	998
V7C8	1	2750	183	253	23,6	4,1	26953	24739	2 ø6	562	202900	1046
V5C9	2	2750	103	250	22,6	4,26	24766	23078	2 ø6	562	202900	573
V5C10	2	2750	103	251	27,9	4,59	26476	23190	2 ø6	562	202900	565
V5C11	3	2750	102	251	23,6	4,1	26953	24739	2 ø6	562	202900	569
V5C12	0	2750	102	251	26,1	4,71	28318	25464	2 ø6	562	202900	662
V6C13	4	2750	152	247	27,9	4,59	26476	23190	2 ø6	562	202900	906
V6C14	5	2750	152	248	22,6	4,26	24766	23078	2 ø6	562	202900	840
V6C15	3	2750	152	248	26,1	4,71	28318	25464	2 ø6	562	202900	894
V6C16	1	2750	152	249	23,6	4,1	26953	24739	2 ø6	562	202900	881
2005-1		2850	120	400	27,3		26275	25134	2 ø6			1100
2005-2		2850	120	400	27,3		26275	25134	2 ø6			1146
2005-3		2850	120	400	27,3		26275	25134	2 ø6			1162
2005-4		2850	120	400	27,3		26275	25134	2 ø6			1210

Tabel 4.1. Forsøgsresultater med centralt uarmerede vægge.

I tabellen betyder:

- *e* elementets afvigelse fra planhed.
- *ls* forsøgsemnets søjlelængde, dvs. afstanden mellem omdrejningspunkterne i forsøgsopstillingen
- *h* elementets tykkelse
- *b* elementets bredde
- f_{cm} betonens middeltrykstyrke målt på 8 prøvecylindre
- f_{ctm} betonens middelbøjetrækstyrke målt på 8 prismer
- $E_{c0,test}$ betonens "begyndelseselasticitetsmodul" målt på arbejdskurven for spændinger op til 12 MPa
- E_{sek} betonens "sekantelasticitetsmodul" målt som bedste rette linie til arbejdskurven op til 75% af forventet betonstyrke
- f_y armeringens flydespænding gennemsnit af 5 målinger
- E_s armeringens elasticitetsmodul gennemsnit af 5 målinger

Det bemærkes, at de målte elasticitetsmoduler hverken er betonens begyndelseselasticitetsmodul eller sekantelasticitetsmodul, men er rette linier gennem $(\sigma, \varepsilon) = (0,0)$ og målte værdier på arbejdskurven op til henholdsvis $\sigma = 12MPa$ og $\sigma = 0.75 f_c$. Værdierne er derfor ikke yderligere behandlet eller anvendt i det efterfølgende. Den ringe forskel på de to værdier for samme beton indikerer dog, at betonen ikke er så blød, som det forudsættes i betonnormen, DS 411.

4.2 Bæreevner med beregningsmodeller

4.2.1 Centralt belastede vægge – DS411

Nr	l_s	h	b	l_s/i	f_{cm}	$N_{\rm test}$	E _{0cr}	$\sigma_{\scriptscriptstyle cr}$	$N_{ m teori}$	$N_{\rm test}$
										N_{teori}
	mm	mm	mm		MPa	kN	MPa	MPa	kN	
V1BC1	2770	122	250	79	23,2	707	23200	14,3	448,9	1,58
V1BC2	2770	123	251	78	23,2	735	23200	14,4	457,0	1,61
V8C3	2750	124	251	77	50,7	1354	30444	25,4	802,0	1,69
V8C4	2750	123	251	77	48,3	1246	30138	24,5	766,9	1,62
V7C5	2750	182	251	52	26,1	1119	25533	20,3	946,4	1,18
V7C6	2750	184	252	52	27,9	1079	26092	21,6	1020,1	1,06
V7C7	2750	184	253	52	22,6	998	22600	17,8	845,2	1,18
V7C8	2750	183	253	52	23,6	1046	23600	18,5	875,0	1,20
V5C9	2750	103	250	92	22,6	573	22600	12,1	323,9	1,77
V5C10	2750	103	251	92	27,9	565	26092	14,5	386,1	1,46
V5C11	2750	102	251	93	23,6	569	23600	12,5	332,7	1,71
V5C12	2750	102	251	93	26,1	662	25533	13,7	362,9	1,82
V6C13	2750	152	247	63	27,9	906	26092	19,6	750,7	1,21
V6C14	2750	152	248	63	22,6	840	22600	16,2	625,6	1,34
V6C15	2750	152	248	63	26,1	894	25533	18,6	715,4	1,25
V6C16	2750	152	249	63	23,6	881	23600	16,9	655,1	1,34
2005 - 1	2850	120	400	82	27,3	1100	25911	15,8	773,9	1,42
2005 - 2	2850	120	400	82	27,3	1146	25911	15,8	773,9	1,48
2005 - 3	2850	120	400	82	27,3	1162	25911	15,8	773,9	1,50
2005 - 4	2850	120	400	82	27,3	1210	25911	15,8	773,9	1,56

Tabel 4.2. Bæreevne med beregningsmodel i DS411:1998.

Figur 4.1. Sammenhørende værdier af eksperimentel bæreevne N_{test} og bæreevne efter DS411:1998, N_{teori} markeret med x. Fuldt optrukket linie: bedste fit med statistisk model i anneks A. Stiplet line: eksperimentel bæreevne lig beregnet bæreevne.

Bæreevne af betonvægselementer

I tabel 4.2 er vist bestemmelse af bæreevner vha. beregningsmodellen i DS411:1998 [4], se afsnit 3.1.1 og 3.1.3, formel (3.10), (3.2) og (3.6). *i* angiver inertiradius. I figur 4.1 er sammenhørende værdier af beregnet bæreevne og eksperimentel målt bæreevne vist. Desuden er vist med fuldt optrukket linie den sammenhæng mellem beregnet og eksperimentelt bestemte bæreevne, der fås ved det bedste fit med den statistisk model beskrevet i anneks A. Den stiplede linie angiver den sammenhæng mellem bæreevner, som svarer til en 'perfekt' beregningsmodel. Det ses, at

- Beregningsmodellen undervurderer den eksperimentelt bestemte bæreevne
- Der er stor usikkerhed på bæreevnerne bestemt ved beregningsmodellen, når der sammenlignes med forsøgsresultaterne
- Sammenlignes forsøgene C1, C2 med C3 og C4 ses at beregningsmodellens nøjagtighed er den samme for beton med $f_c \approx 50MPa$ og $f_c \approx 25MPa$.

4.2.2 Centralt belastede vægge – DS411 uden forsigtig E-modul

I tabel 4.3 er vist bestemmelse af bæreevner vha. beregningsmodellen i DS411:1998 [4] men uden forsigtig E-modul, se afsnit 3.1.1 og 3.1.3, formel (3.10), (3.2) og (3.5). *i* angiver inertiradius. I figur 4.2 er sammenhørende værdier af beregnet bæreevne og eksperimentel målt bæreevne vist. Desuden er vist med fuldt optrukket linie den sammenhæng mellem beregnet og eksperimentelt bestemte bæreevne, der fås ved det bedste fit med den statistisk model beskrevet i anneks A. Den stiplede linie angiver den sammenhæng mellem bæreevnerne, som svarer til en 'perfekt' beregningsmodel. Det ses, at

- Beregningsmodellen undervurderer den eksperimentelt bestemte bæreevne, men mindre end med anvendelse af forsigtig E-modul.
- Der er stor usikkerhed på bæreevnerne bestemt ved beregningsmodellen når der sammenlignes med forsøgsresultaterne
- Sammenlignes forsøgene C1, C2 med C3 og C4 ses at beregningsmodellens nøjagtighed er den samme for beton med $f_c \approx 50MPa$ og $f_c \approx 25MPa$.

Nr	l_s	h	b	l_s/i	f_{cm}	N_{test}	E_{0c}	$\sigma_{\scriptscriptstyle cr}$	N _{rev}	N _{test}
										N_{rev}
	mm	mm	mm		MPa	kN	MPa	MPa	kN	
V1BC1	2770	122	250	79	23,2	707	32685	16,1	505,4	1,40
V1BC2	2770	123	251	78	23,2	735	32685	16,1	513,9	1,43
V8C3	2750	124	251	77	50,7	1354	40592	29,0	916,2	1,48
V8C4	2750	123	251	77	48,3	1246	40184	27,9	874,8	1,42
V7C5	2750	182	251	52	26,1	1119	34043	21,5	1001,7	1,12
V7C6	2750	184	252	52	27,9	1079	34790	22,9	1080,9	1,00
V7C7	2750	184	253	52	22,6	998	32376	19,0	903,4	1,10
V7C8	2750	183	253	52	23,6	1046	32885	19,7	931,7	1,12
V5C9	2750	103	250	92	22,6	573	32376	14,1	376,7	1,52
V5C10	2750	103	251	92	27,9	565	34790	16,5	438,9	1,29
V5C11	2750	102	251	93	23,6	569	32885	14,4	383,6	1,48
V5C12	2750	102	251	93	26,1	662	34043	15,6	411,8	1,61
V6C13	2750	152	247	63	27,9	906	34790	21,1	811,2	1,12
V6C14	2750	152	248	63	22,6	840	32376	17,7	684,4	1,23
V6C15	2750	152	248	63	26,1	894	34043	20,0	771,2	1,16
V6C16	2750	152	249	63	23,6	881	32885	18,4	712,4	1,24
2005 - 1	2850	120	400	82	27,3	1100	34548	17,7	864,5	1,27
2005 - 2	2850	120	400	82	27,3	1146	34548	17,7	864,5	1,33
2005 - 3	2850	120	400	82	27,3	1162	34548	17,7	864,5	1,34
2005 - 4	2850	120	400	82	27,3	1210	34548	17.7	864,5	1,40

Tabel 4.3. Bæreevne med beregningsmodel i DS411:1998, uden forsigtig E-modul.

Figur 4.2. Sammenhørende værdier af eksperimentel bæreevne N_{test} og bæreevne efter DS411:1998 uden forsigtig E-modul, N_{rev} markeret med x. Fuldt optrukket linie: bedste fit med statistisk model i anneks A. Stiplet line: eksperimentel bæreevne lig beregnet bæreevne.

Nr	l_s	h	b	l_s/i	f_{cm}	$N_{\rm test}$	E_{c0}	$\sigma_{\scriptscriptstyle cr}$	N _{ny}	N _{test}
										N_{ny}
	mm	mm	mm		MPa	kN	MPa	MPa	kN	
V1BC1	2770	122	250	79	23,2	707	32685	21,2	667,2	1,06
V1BC2	2770	123	251	78	23,2	735	32685	21,3	676,9	1,09
V8C3	2750	124	251	77	50,7	1354	40592	40,6	1282,4	1,06
V8C4	2750	123	251	77	48,3	1246	40184	39,0	1222,4	1,02
V7C5	2750	182	251	52	26,1	1119	34043	25,5	1188,3	0,94
V7C6	2750	184	252	52	27,9	1079	34790	27,3	1286,1	0,84
V7C7	2750	184	253	52	22,6	998	32376	22,2	1055,9	0,95
V7C8	2750	183	253	52	23,6	1046	32885	23,2	1094,2	0,96
V5C9	2750	103	250	92	22,6	573	32376	19,3	517,3	1,11
V5C10	2750	103	251	92	27,9	565	34790	22,9	610,9	0,92
V5C11	2750	102	251	93	23,6	569	32885	19,9	529,3	1,07
V5C12	2750	102	251	93	26,1	662	34043	21,6	571,9	1,16
V6C13	2750	152	247	63	27,9	906	34790	26,6	1019,4	0,89
V6C14	2750	152	248	63	22,6	840	32376	21,8	842,6	1,00
V6C15	2750	152	248	63	26,1	894	34043	25,0	962,7	0,93
V6C16	2750	152	249	63	23,6	881	32885	22,7	880,6	1,00
2005 - 1	2850	120	400	82	27,3	1100	34548	24,0	1172,0	0,94
2005 - 2	2850	120	400	82	27,3	1146	34548	24,0	1172,0	0,98
2005 - 3	2850	120	400	82	27,3	1162	34548	24,0	1172,0	0,99
2005 - 4	2850	120	400	82	27,3	1210	34548	24,0	1172,0	1,03

4.2.3 Centralt belastede vægge – ny formel

Tabel 4.4. Bæreevne med ny beregningsmodel.

Figur 4.3. Sammenhørende værdier af eksperimentel bæreevne N_{test} og bæreevne efter ny formel, N_{ny} markeret med x. Fuldt optrukket linie: bedste fit med statistisk model i anneks A. Stiplet line: eksperimentel bæreevne lig beregnet bæreevne.

I tabel 4.4 er vist bestemmelse af bæreevner vha. den ny beregningsmodel beskrevet i afsnit 3.1.2 og 3.1.2, formel (3.10), (3.9) og (3.5). I figur 4.3 er sammenhørende værdier af beregnet bæreevne og eksperimentel målt bæreevne vist. Desuden er vist med fuldt optrukket linie den sammenhæng mellem beregnet og eksperimentelt bestemt bæreevne, der fås ved det bedste fit med den statistisk model beskrevet i anneks A. Den stiplede linie angiver den sammenhæng mellem bæreevnerne, som svarer til en 'perfekt' beregningsmodel. Det ses, at

- Beregningsmodellen giver bæreevner, der svarer meget godt til de eksperimentelt bestemte bæreevner.
- Der er lille usikkerhed på bæreevnerne bestemt ved beregningsmodellen når der sammenlignes med forsøgsresultaterne
- Sammenlignes forsøgene C1, C2 med C3 og C4 ses at beregningsmodellens nøjagtighed er den samme for beton med $f_c \approx 50MPa$ og $f_c \approx 25MPa$.

4.2.4 *Kommentarerer for beregningsmodeller for centralt belastede vægge* Sammenfattende om beregningsmodellerne kan det konstateres:

- at DS 411 undervurderer bæreevnen. Undervurderingen øges med øget slankhed
- at DS 411 uden den reducerede E-modul passer bedre med forsøgsresultater. Bæreevnen undervurderes stadig og undervurderingen er større jo slankere søjlerne er.
- at den foreslåede nye formel, der svarer til en stivere beton end anvendt i DS 411, passer godt med forsøgsresultaterne. Der er stadig en svag tendens til at bæreevnen undervurderes med øget slankhed.
- at en væg med $f_{ck} = 50$ MPa kan beregnes med samme nøjagtighed som en væg med $f_{ck} = 25$ MPa.

4.3 Statistisk vurdering af resultater

I dette afsnit beskrives en statistisk vurdering af beregningsmodellerne i forhold til forsøgsdata. Der benyttes den statistiske metode fra DS409:2006, som er kort beskrevet i anneks A.

Der benyttes:

- ukendt variationskoefficient for usikkerhed på bæreevnen
- kun 1 grundlæggende variabel, nemlig betons trykstyrke, f_c idet usikkerhed på øvrige parametre inkluderes i modelusikkerheden for beregningsmodellen, der modelleres ved estimeringsfejlen δ , se anneks A
- følgende geometri: h = 184mm, b = 252mm og $l_s / i = 52$
- beregningsmodellen for bæreevnen betegnes $N_{cr}(f_c)$

I nedenstående tabel er fremgangsmåden ved den statistiske analyse beskrevet og eksemplificeret ved beregningsmodellen i DS411:1998, se afsnit 3.1.1.

Beregning - teori	Note	Forklaring	DS411
f_{cm}	1	Middelværdi af betontrykstyrke vælges	28 MPa
V _{fc}	2	Variationskoefficient af betontrykstyrke vælges på baggrund af [7]	0,10
f_{ck}		Karakteristisk betontrykstyrke: beregnes ud fra f_{cm}	23,8 MPa
		og V_{f_c} , idet betontrykstyrken antages Logaritmisk Normal fordelt	
$N_{cr}(f_{cm})$		Bæreevne beregnet med middelværdi af betontryk- styrke og beregningsmodellen i afsnit 3.1.1: formel (3.10), (3.2) og (3.6)	1023 kN
$N_{cr}(f_{ck})$		Bæreevne beregnet med karakteristisk betontryk- styrke og beregningsmodellen i afsnit 3.1.1	884 kN
γ_M^{norm}		Partialkoefficient – fra tillæg til DS411:2006 [5]	1,55
$N_{cr,d}^{norm} = N_{cr} (f_{ck} / \gamma_M^{norm})$	3	Bæreevne – regningsmæssig, bestemt med reg- ningsmæssig værdi af betontrykstyrke = f_{ck} / γ_M^{norm}	571 kN
Beregning - data			
n		Antal forsøg	20
<i>b</i>	4	Bedste fit af hældning beregnet vha. formel (A3)	1,37
V_{δ}	5	Variationskoefficient for estimeringsfejl beregnet vha. formel (A9)	0,16
r_k		Karakteristisk bæreevne beregnet vha. formel (A13)	1012 kN
γ_M^{data}	6	Partialkoefficient med V_{f_c} og V_r bestemt vha.	1,53
		DS409:2006, tabel 6.3.5.3a og 6.3.5.3d og $\gamma_1 = 1, 1$	
$N_{cr,d}^{data} = r_k / \gamma_M^{data}$	7, 8	Regningsmæssig bæreevne	662 kN
$r_k / N_{cr}(f_{ck})$	8	Karakteristisk bæreevne: data / norm	1,14
$N_{cr,d}^{data}$ / $N_{cr,d}^{norm}$	9	Regningsmæssig bæreevne: data / norm	1,16

Tabel 4.5. Statistisk vurdering af forsøgsdata med beregningsmodellen i DS411:1998.

Noter: 1. Det foreslås, at der laves en henvisning til anneks A, da henvisningerne A3 m fl ellers vil svæve <u>lidt.</u>

- 2. Resultaterne er konservative med valg af V_{f_c} =0.1 sammenlignet med større værdier af V_{f_c} .
- 3. Benyttes normen (DS411) fås med den valgte geometri og en middel betontrykstyrke på 28 MPa (karakteristisk værdi på 23,8 MPa), en regningsmæssig bæreevne lig 571 kN.
- 4. *b* er meget større end 1, hvilket viser at de eksperimentelle bæreevner er meget større end de beregnede (i gennemsnit ca. 37%).
- 5. Variationskoefficienten V_{δ} er relativ stor, hvilket også ses af figur 4.1. Dette indikerer, at estimeringsfejlen for beregningsmodellen er relativ stor.
- 6. Modellen til bestemmelse af partialkoefficienter i DS409:2006 benyttes.
- 7. Den regningsmæssige bæreevne bestemmes (approksimativt) ved at dividere den karakteristiske bæreevne med partialkoefficienten γ_M^{data}
- 8. Benyttes en statistisk vurdering af forsøgsdata og modellen for fastlæggelse af partialkoefficienter i DS409:2006 fås en regningsmæssig bæreevne lig 662 kN, dvs. 16% større end ved at benytte beregningsmodellen i DS411:1998.
- 9. Tilsvarende er den karakteristiske bæreevne 14% større ved at benytte forsøgsdata.

I tabel 4.6 og 4.7 er tilsvarende statistiske beregninger vist for alle 3 beregningsmodeller, og med middelværdier af betontrykstyrker lig 28 MPa og 50 MPa. Resultaterne viser:

- Ny formel giver en væsentligt mindre usikkerhed på beregningsmodellen (8%) end de 2 beregningsmodeller baseret på DS411:1998
- Med ny formel fås en regningsmæssig bæreevne med beregningsmodellen der er lig den regningsmæssige bæreevne, der fås af den statistiske analyse, dvs. det er OK at benytte 'ny formel' med partialkoefficient γ_M^{norm} lig 1,55.
- Den regningsmæssige bæreevne øges fra 571 kN med beregningsmodel i DS411:1998 til 712 kN med 'ny formel', dvs. med 25% for middel betontrykstyrke lig 28 MPa. Tilsvarende fås en forøgelse på 33% når middel betontrykstyrken er 50 MPa.

Foretages tilsvarende beregninger med ny formel og følgende geometri: h = 110mm, b = 252mm og $l_s / i = 95$ fås $N_{cr,d}^{data} / N_{cr,d}^{norm} = 0.99$, dvs. det er også for denne geometri OK at benytte den ny formel.

Beregning - teori	DS411	DS411 – uden for-	Ny formel
f_{cm}	28 MPa	28 MPa	28 MPa
V _{fc}	0,10	0,10	0,10
f_{ck}	23,8 MPa	23,8 MPa	23,8 MPa
$N_{cr}(f_{cm})$	1023 kN	1084 kN	1291 kN
$N_{cr}(f_{ck})$	884 kN	940 kN	1104 kN
γ_M^{norm}	1,55	1,55	1,55
$N_{cr,d}^{norm} = N_{cr}(f_{ck} / \gamma_M^{norm})$	571 kN	607 kN	712 kN
Beregning - data			
n	20	20	20
b	1,37	1,25	0,98
V_{δ}	0,16	0,13	0,08
r_k	1012 kN	1025 kN	1014 kN
γ_M^{data}	1,53	1,49	1,43
$N_{cr,d}^{data} = r_k / \gamma_M^{data}$	662 kN	687 kN	712 kN
$r_k / N_{cr}(f_{ck})$	1,14	1,09	0,92
$N_{cr,d}^{data} / N_{cr,d}^{norm}$	1,16	1,13	1,00

Tabel 4.6. Statistisk vurdering af forsøgsdata med middelværdi af betontrykstyrken lig 28 MPa.

Beregning - teori	DS411	DS411 – uden for-	Ny formel
		sigtig E-modul	
f_{cm}	50 MPa	50 MPa	50 MPa
V_{f_c}	0,10	0,10	0,10
f_{ck}	42,4 MPa	42,4	42,4
$N_{cr}(f_{cm})$	1617 kN	1753 kN	2219 kN
$N_{cr}(f_{ck})$	1428 kN	1537 kN	1909 kN
γ_M^{norm}	1,55	1,55	1,55
$N_{cr,d}^{norm} = N_{cr}(f_{ck} / \gamma_M^{norm})$	921 kN	991 kN	1232 kN
Beregning - data			
n	20	20	20
b	1,37	1,25	0,98
V_{δ}	0,16	0,13	0,08
<i>r_k</i>	1610 kN	1668 kN	1754 kN
γ_M^{data}	1,53	1,49	1,43
$N_{cr,d}^{data} = r_k / \gamma_M^{data}$	1054 kN	1119 kN	1230 kN
$r_k / N_{cr}(f_{ck})$	1,13	1,09	0,92
$N_{cr,d}^{data} / N_{cr,d}^{norm}$	1,14	1,13	1,00

Tabel 4.7. Statistisk vurdering af forsøgsdata med middelværdi af betontrykstyrken lig 50 MPa.

5. Excentrisk belastede uarmerede vægge

5.1 Forsøgsresultater

I tabel 5.1 er vist resultaterne af 16 forsøg med excentrisk normalkraft på betonelementvægge. Resultaterne er hentet fra Ellegaard [1]

	Geon	netri			Beton	l			Armer	ing		
	е	l_s	h	b	f _{cm}	f_{ctm}	$E_{c0,test}$	Esek	Antal	f_y	E_s	N _{test}
	mm	mm	mm	mm	MPa	MPa	MPa	MPa		MPa	MPa	kN
V1E1	12,5	2770	102	250	27,2	4,44	28131	27277	2ø6	540	203000	380
V1E2	25	2770	101	249	26,5	4,84	28311	25483	2ø6	540	203000	181
V1AE4	25	2750	101	253	23,2	4,59	26804	22873	2ø6	562	202900	174
V1AE5	12,5	2750	101	251	23,2	4,59	26804	22873	2ø6	562	202900	325
V9E6	20	2750	124	249	22,6	4,26	24766	23078	2ø6	562	202900	374
V9E7	20	2750	123	248	27,9	4,59	26476	23190	2ø6	562	202900	369
V11E8	20	2750	124	251	48,3	5,76	33210	31579	2ø6	562	202900	473
V11E9	40	2750	124	252	50,7	6,34	33917	31890	2ø6	562	202900	194
V9E10	40	2750	123	248	26,1	4,71	28318	25464	2ø6	562	202900	161
V9E11	40	2750	122	252	23,6	4,1	26953	24739	2ø6	562	202900	129
V10E12	60	2750	184	250	23,6	4,1	26953	24739	2ø6	562	202900	249
V10E13	60	2750	184	250	26,1	4,71	28318	25464	2ø6	562	202900	281
V10E14	30	2750	184	251	27,9	4,59	26476	23190	2ø6	562	202900	660
V10E15	30	2750	184	250	22,6	4,26	24766	23078	2ø6	562	202900	628
V2E16	25	2750	150	252	27,2	4,44	28131	27277	2ø6	540	203000	490
V2E17	50	2750	151	250	26,5	4,84	28311	25483	2ø6	540	203000	171

Tabel 5.1. Forsøgsresultater med centralt uarmerede vægge.

I tabellen betyder:

- *e* lastens excentricitet
- *ls* forsøgsemnets søjlelængde, dvs. afstanden mellem omdrejningspunkterne i forsøgsopstillingen

h elementets tykkelse

b elementets bredde

f_{cm} betonens middeltrykstyrke målt på 8 prøvecylindre

- f_{ctm} betonens middelbøjetrækstyrke målt på 8 prismer
- $E_{c0,test}$ betonens begyndelseselasticitetsmodul målt på arbejdskurven for spændinger op til 12 MPa
- E_{sek} betonens sekantelasticitetsmodul målt som bedste rette linie til arbejdskurven op til 75% af forventet betonstyrke
- f_y armeringens flydespænding gennemsnit af 5 målinger
- E_s armeringens elasticitetsmodul gennemsnit af 5 målinger

For de målte elasticitetsmoduler gælder de samme bemærkninger som anført under forsøgsresultaterne for centralt belastede vægge.

5.2 Bæreevner med beregningsmodeller

5.2.1 Excentrisk belastede vægge – DS411

Nr	е	l_s	h	h'	b	l_s/i	f_{cm}	$N_{\rm test}$	$\sigma_{_{cr}}$	$N_{ m teori}$	N _{test}
											$N_{ m teori}$
	mm	mm	mm	mm	mm		MPa	kN	MPa	kN	
V1E1	12,5	2770	102	77	250	125	27,2	380	8,0	204,7	1,86
V1E2	25	2770	101	51	249	188	26,5	181	3,3	83,6	2,17
V1AE4	25	2750	101	51	253	187	23,2	174	2,9	75,3	2,31
V1AE5	12,5	2750	101	76	251	125	23,2	325	6,8	171,8	1,89
V9E6	20	2750	124	84	249	113	22,6	374	6,8	210,4	1,78
V9E7	20	2750	123	83	248	115	27,9	369	8,3	252,5	1,46
V11E8	20	2750	124	84	251	113	48,3	473	14,6	453,3	1,04
V11E9	40	2750	124	44	252	217	50,7	194	4,5	141,0	1,38
V9E10	40	2750	123	43	248	222	26,1	161	2,2	68,0	2,37
V9E11	40	2750	122	42	252	227	23,6	129	1,9	59,3	2,17
V10E12	60	2750	184	64	250	149	23,6	249	3,4	158,4	1,57
V10E13	60	2750	184	64	250	149	26,1	281	3,8	175,2	1,60
V10E14	30	2750	184	124	251	77	27,9	660	11,7	540,9	1,22
V10E15	30	2750	184	124	250	77	22,6	628	9,5	436,4	1,44
V2E16	25	2750	150	100	252	95	27,2	490	9,6	362,8	1,35
V2E17	50	2750	151	51	250	187	26,5	171	2,9	109,6	1,56

Tabel 5.2. Bæreevne med beregningsmodel i DS411:1998.

Figur 5.1. Sammenhørende værdier af eksperimentel bæreevne N_{test} og bæreevne efter DS411:1998, N_{teori} markeret med x. Fuldt optrukket linie: bedste fit med statistisk model i anneks A. Stiplet line: eksperimentel bæreevne lig beregnet bæreevne.

I tabel 5.2 er vist bestemmelse af bæreevner vha. beregningsmodellen i DS411:1998 [4]. I tabellen er $\sigma_{cr} = \frac{N_{cr}}{f_{cm}bh}$, hvor N_{cr} er bestemt af formel (3.16). Det bemærkes, at der er set bort fra armeringens eventuelle bidrag til bæreevnen

gens eventuelle bidrag til bæreevnen.

I figur 5.1 er sammenhørende værdier af beregnet bæreevne og eksperimentel målt bæreevne vist. Desuden er vist med fuldt optrukket linie den sammenhæng mellem beregnet og eksperimentelbæreevne, der fås ved det bedste fit med den statistisk model beskrevet i anneks A. Den stiplede linie angiver den sammenhæng mellem bæreevnerne, som svarer til en 'perfekt' beregningsmodel. Det ses, at

- Beregningsmodellen undervurderer den eksperimentelt bestemte bæreevne
- Der er stor usikkerhed på bæreevnerne bestemt ved beregningsmodellen når der sammenlignes med forsøgsresultaterne

Formlen i DS 411er en tilnærmelsesformel, der gælder for uarmerede vægge/søjler, dvs. de kun gælder for betonstyrker op til $f_{ck} = 25MPa$. Ved udarbejdelse af tilnærmelsen er anvendt $E_{0cr} = 1000 \cdot f_c$, der er gældende for betonstyrker $f_{ck} \le 25MPa$. Når formlen her anvendes for styrker over 25 MPa betyder det, at vi er udenfor normens gyldighedsområde og at elasticitetsmodulen regnes for høj efter de regler, der anvendes i DS 411.

I alle tilfælde ses, at formlen giver for små bæreevner, og at uoverensstemmelsen bliver større for øget værdi af excentriciteten, dvs. for mindsket værdi af $1 - \frac{e}{h}$ ved samme værdi af h.

5.2.2 Excentrisk belastede vægge – ny formel

I tabel 5.3 er vist bestemmelse af bæreevner vha. den ny beregningsmodel beskrevet i afsnit 3.2.2, formel (3.18). I figur 5.2 er sammenhørende værdier af beregnet bæreevne og eksperimentel målt bæreevne vist. σ_{cr} er bestemt af (3.16) som $\sigma_{cr} = N_{cr} / A_c$. Desuden er vist med fuldt optrukket linie den sammenhæng mellem beregnet og eksperimentelbæreevne, der fås ved det bedste fit med den statistisk model beskrevet i anneks A. Den stiplede linie angiver den sammenhæng mellem bæreevnerne, som svarer til en 'perfekt' beregningsmodel. Det ses, at

- Beregningsmodellen giver bæreevner, der både er større end og mindre end de eksperimentelt målte bæreevner.
- Der er stor usikkerhed på bæreevnerne bestemt ved beregningsmodellen når der sammenlignes med forsøgsresultaterne – for små bæreevner er de målte bæreevner mindre end middelbæreevnen (markeret ved fuldt optrukken linie), medens der for store bæreevner fås målte bæreevner der er større end middelbæreevnen.
- Beregningsmetoden kan anvendes for beton med høje styrker, idet forholdet mellem beregnet og målt styrke viser samme billede uanset betonstyrke – sammenlign f.eks. V11E8 med V9E6 og V9E7 for e = 20 mm og sammenlign V11E9 med V9E10 og V9E11 for e = 40 mm.

Resultaterne viser også, at

• Beregningerne bliver mere på den sikre side med øget slankhed (mindsket inertiradius *i*), hvilket er det samme billede som ved centralt belastede vægge beregnet med den nye formel.

Nr	е	l_s	h	h'	b	l_s/i	f_{cm}	$N_{\rm test}$	E _{c0}	$\sigma_{\scriptscriptstyle cr}$	$N_{\rm ny}$	N _{test}
												$N_{\rm ny}$
	mm	mm	mm	mm	mm		MPa	kN	MPa	MPa	kN	
V1E1	12,5	2770	102	77	250	125	27,2	380	34507	17,1	328,6	1,16
V1E2	25	2770	101	51	249	188	26,5	181	34215	9,0	114,0	1,59
V1AE4	25	2750	101	51	253	187	23,2	174	32685	8,6	110,8	1,57
V1AE5	12,5	2750	101	76	251	125	23,2	325	32685	15,4	293,3	1,11
V9E6	20	2750	124	84	249	113	22,6	374	32376	16,7	349,7	1,07
V9E7	20	2750	123	83	248	115	27,9	369	34790	19,0	392,1	0,94
V11E8	20	2750	124	84	251	113	48,3	473	40184	26,0	548,0	0,86
V11E9	40	2750	124	44	252	217	50,7	194	40592	8,4	93,4	2,08
V9E10	40	2750	123	43	248	222	26,1	161	34043	6,6	70,6	2,28
V9E11	40	2750	122	42	252	227	23,6	129	32885	6,1	64,5	2,00
V10E12	60	2750	184	64	250	149	23,6	249	32885	12,4	199,1	1,25
V10E13	60	2750	184	64	250	149	26,1	281	34043	13,1	209,8	1,34
V10E14	30	2750	184	124	251	77	27,9	660	34790	25,2	783,0	0,84
V10E15	30	2750	184	124	250	77	22,6	628	32376	20,9	646,5	0,97
V2E16	25	2750	150	100	252	95	27,2	490	34507	22,0	555,0	0,88
V2E17	50	2750	151	51	250	187	26,5	171	34215	9,1	115,9	1,48

Tabel 5.3. Bæreevne med ny beregningsmodel - alle data.

Figur 5.2. Sammenhørende værdier af eksperimentel bæreevne N_{test} og bæreevne efter ny begningsmodel, N_{ny} markeret med x. Fuldt optrukket linie: bedste fit med statistisk model i anneks A. Stiplet line: eksperimentel bæreevne lig beregnet bæreevne – alle data.

Det bemærkes, at der er meget stor spredning på N_{test} / N_{ny} og dermed er der stor usikkerhed på beregningsmodellen, især for vægge med store slankhedstal fås store værdier af N_{test} / N_{ny} . Ved den statistiske behandling vil dette resultere i en stor partialkoefficient, se afsnit 5.3. Med henblik på at mindske usikkerheden på beregningsmodellen undersøges, hvor god den nye beregningsmodel er, hvis der indføres følgende ændring i beregningsmodellen:

- Hvis slankhedstallet $l_s / i < 95$: bæreevne uændret
- Hvis slankhedstallet $95 \le l_s / i$: bæreevne divideres med 1,25

Data med slankhedstal i intervallet $95 \le l_s/i \le 125$ betragtes som homogene og behandles som en gruppe ved den statistiske behandling, se tabel 5.4 og figur 5.3. Vægge med slankhedstal $l_s/i > 125$ er ikke medtaget, da der for disse fås eksperimentelle bæreevner, som er meget større end de teoretiske bæreevner, se ovenfor.

Nr	е	l_s	h	h'	b	l_s/i	f_{cm}	$N_{\rm test}$	E_{c0}	$\sigma_{\scriptscriptstyle cr}$	$N_{\rm ny}$	N_{test}
												$N_{ m ny}$
	mm	mm	mm	mm	mm		MPa	kN	MPa	MPa	kN	
V1E1	12,5	2770	102	77	250	125	27,2	380	34507	17,1	262,9	1,45
V1AE5	12,5	2750	101	76	251	125	23,2	325	32685	15,4	234,6	1,39
V9E6	20	2750	124	84	249	113	22,6	374	32376	16,7	279,7	1,34
V9E7	20	2750	123	83	248	115	27,9	369	34790	19,0	313,6	1,18
V11E8	20	2750	124	84	251	113	48,3	473	40184	26,0	438,4	1,08
V2E16	25	2750	150	100	252	95	27,2	490	34507	22,0	444,0	1,10

Tabel 5.4. Bæreevne med ny beregningsmodel – data med slankhedstal 95 $\leq l_s/i \leq 125$ og bæreevnen divideret med 1,25.

Figur 5.3. Sammenhørende værdier af eksperimentel bæreevne N_{test} og bæreevne efter ny begningsmodel, N_{ny} markeret med x. Fuldt optrukket linie: bedste fit med statistisk model i anneks A. Stiplet line: eksperimentel bæreevne lig beregnet bæreevne – data med slankhedstallet 95 $\leq l_s/i \leq 125$.

5.3 Statistisk vurdering af resultater

I dette afsnit beskrives en statistisk vurdering af beregningsmodellerne med samme forudsætninger som i afsnit 4.3 og følgende geometri: h = 123mm, b = 248mm, e = 20mm og $l_s/i = 115$.

I tabel 5.5 er resultaterne vist med beregningsmodellen i DS411 og med 'ny formel'. Data fra alle 16 forsøg er medtaget. Det ses, at

- Beregningsmodellen i DS411 giver bæreevner, der er meget mindre end de eksperimentelle, men usikkerheden er stor – variationskoefficient lig 26%. Denne store variationskoefficient bevirker, at den karakteristiske bæreevne kun svarer til beregningsmodellen, og dermed at den regningsmæssige bæreevne overvurderes ved anvendelse af beregningsmodellen i DS411:1998. Dvs. det er lidt på den usikre side at benytte beregningsmodellen i den nuværende norm.
- Den ny beregningsmodel giver bæreevner, der er lidt større end de eksperimentelle, og usikkerheden er meget stor – variationskoefficient lig 34%. Denne store variationskoefficient bevirker, at den karakteristiske bæreevne bliver meget mindre end beregningsmodellens, og også at den regningsmæssige bæreevne overvurderes ved anvendelse af beregningsmodellen.

Beregning - teori	DS411	Ny formel
f_{cm}	28 MPa	28 MPa
V _{fc}	0,10	0,10
f_{ck}	23,8 MPa	23,8 MPa
$N_{cr}(f_{cm})$	253 kN	393 kN
$N_{cr}(f_{ck})$	215 kN	353 kN
γ_M^{norm}	1,55	1,55
$N_{cr,d}^{norm} = N_{cr}(f_{ck} / \gamma_M^{norm})$	139 kN	227 kN
Beregning - data		
n	20	20
b	1,36	0,96
V_{δ}	0,26	0,34
<i>r</i> _k	213 kN	199 kN
γ_M^{data}	1,54	1,76
$N_{cr,d}^{data} = r_k / \gamma_M^{data}$	130 kN	113 kN
$r_k / N_{cr}(f_{ck})$	0,99	0,56
$N_{cr,d}^{data}$ / $N_{cr,d}^{norm}$	0,94	0,50

Tabel 5.5. Statistisk vurdering af forsøgsdata med middelværdi af betontrykstyrken lig 28 MPa. Alle data.

I tabel 5.4 er vist resultater med den modificerede beregningsmodel, se afsnit 5.2.2:

- Hvis slankhedstallet $l_s / i < 95$: bæreevne uændret
- Hvis slankhedstallet $95 \le l_s / i$: bæreevne divideres med 1,25

Data med slankhedstallet $95 \le l_s / i \le 125$ betragtes som homogene, se afsnit 5.2.2.

Bæreevne af betonvægselementer

Beregning - teori	Ny formel
f_{cm}	28 MPa
V _{fc}	0,10
f_{ck}	23,8 MPa
$N_{cr}(f_{cm})$	314 kN
$N_{cr}(f_{ck})$	282 kN
γ_M^{norm}	1,55
$N_{cr,d}^{norm} = N_{cr}(f_{ck} / \gamma_M^{norm})$	182 kN
Beregning - data	
n	6
b	1,19
V_{δ}	0,12
r_k	278 kN
γ_M^{data}	1,55
$N_{cr,d}^{data} = r_k / \gamma_M^{data}$	187 kN
$r_k / N_{cr}(f_{ck})$	0,99
$N_{cr,d}^{data}$ / $N_{cr,d}^{norm}$	1,03

Tabel 5.6. Statistisk vurdering af forsøgsdata med middelværdi af betontrykstyrken lig 28 MPa og ny formel – kun data med slankhedstal 95 $\leq l_s / i \leq 125$ og bæreevnen divideret med 1,25.

I tabel 5.6 er resultaterne vist med 'ny formel'. Kun data med slankhedstal $95 < \le l_s / i \le 125$ er medtaget. Det ses, at

- Ny formel med division med 1,25 giver væsentlig mindre usikkerhed på beregningsmodellen (12%) end beregningsmodellerne med alle data (henholdsvis 26% og 34%).
- Med ny formel divideret med 1,25 fås regningsmæssige bæreevner, der er lig med de regningsmæssige bæreevner, som fås af den statistiske analyse, dvs. det er i orden at benytte den ny formel divideret med 1,25 med partialkoefficient $\gamma_{M}^{norm} = 1,55$
- Den regningsmæssige bæreevne øges fra 139 kN med beregningsmodellen i DS411:1998 til 187 kN med ny formel divideret med 1,25, dvs. med 35% for middeltrykstyrke lig med 28 MPa

Foretages tilsvarende beregninger med nye beregningsmodel og følgende geometri: h = 123mm, b = 248mm, e = 15mm og $l_s/i = 102$ fås $N_{cr,d}^{data}/N_{cr,d}^{norm} = 1.04$, dvs. det er også for denne geometri OK at benytte den nye beregningsmodel

6. Tværbelastede armerede søjler

6.1 Forsøgsresultater

	Geor	netri			Beton				Armering			
	е	l_s	h	b	f _{cm}	<i>f</i> _{ctm}	$E_{c0,test}$	Esek	Antal	f_y	E_s	N _{test}
	mm	mm	mm	mm	MPa	MPa	MPa	MPa		MPa	MPa	kN
V3T1	3,4	2770	101	248	28,2	4,44	28131	27277	6ø8	550	200067	582
V3T2	3,7	2770	100	248	28,2	4,44	28131	27277	6ø8	550	200067	531
V3T3	3,3	2770	102	248	26,7	4,84	28311	25483	6ø8	550	200067	602
V4T4	1,9	2770	151	249	28,2	4,44	28131	27277	6ø8	550	200067	1042
V4T5	2,0	2770	152	249	26,7	4,84	28311	25483	6ø8	550	200067	1006

Tabel 6.1. Forsøgsresultater.

I tabellen betyder:

- excentricitet bestemt som e = M / N hvor M = 1.98 kNm, se efterfølgende, og N er brudе lasten
- forsøgsemnets søjlelængde, dvs. afstanden mellem omdrejningspunkterne i forsøgsopstil l_s lingen

elementets tykkelse h

- elementets bredde b
- betonens middeltrykstyrke målt på 8 prøvecylindre fcm
- betonens middelbøjetrækstyrke målt på 8 prismer fctm
- $E_{c0,test}$ betonens begyndelseselasticitetsmodul målt på arbejdskurven for spændinger op til 12 MPa
- betonens sekantelasticitetsmodul målt som bedste rette linie til arbejdskurven op til 75% af Esek forventet betonstyrke

 $f_y \\ E_s$ armeringens flydespænding - gennemsnit af 3 målinger

armeringens elasticitetsmodul - gennemsnit af 3 målinger

For de målte elasticitetsmoduler gælder de samme bemærkninger som anført under forsøgsresultaterne for centralt belastede vægge.

Den vandrette last er påført i væggens tredjedelspunkter, dvs. afstande mellem lasterne 1/3 af 2600 mm eller 867 mm. Regnes væggene understøttet ved omdrejningspunkterne bliver afstand a mellem last og reaktion til $\frac{1}{2}$ x (2770 – 867)mm = 952 mm og dermed findes

 $M = P a = 2,08 \cdot 0,952 = 1,98 k Nm$

Ved brud er moment og normalkraft statisk ækvivalent med en normalkraft, der angriber med excentriciteten

 $e = \frac{M}{N}$

Det giver så små excentriciteter, at der jf. DS 411 ikke behøver at blive taget hensyn til excentriciteten og dermed kan bæreevnen bestemmes som for centralt belastede vægge. Grænsen for at skulle tage hensyn til excentriciteten er 1/5 af tværsnittets kærneradius eller 1/30 af vægtykkelsen, dvs. 3,3 mm for 100 mm tykke vægge og 5 mm for 150 mm tykke vægge. For de to vægtyper, der er afprøvet, er excentriciteten ved brud 3,5 mm og 1,9 mm.

Bæreevne af betonvægselementer

Det bemærkes, at i disse prøvelegemer er armeringen 6 armeringsstænger med diameter på 8 mm, hvorfor deres bidrag til bæreevnen er af betydning. Den udgør ca. 15 % af den beregnede bæreevne ved central last for vægge med h = 100 mm og ca. 10 % for vægge med h = 150 mm.

Bæreevner med beregningsmodeller 6.2

6.2.1 Excentrisk belastede vægge – DS411

Nr	е	l_s	h	h'	b	l_s/i	f_{cm}	$N_{\rm test}$	$\sigma_{\scriptscriptstyle cr}$	$N_{ m teori}$	$N_{\rm test}$
											$N_{ m teori}$
	mm	mm	mm	mm	mm		MPa	kN	MPa	kN	
V3T1	3,4	2770	101	94	248	103	28,2	582	12,8	320,5	1,82
V3T2	3,7	2770	100	93	248	104	28,2	531	12,5	309,0	1,72
V3T3	3,3	2770	102	95	248	103	26,7	602	12,3	311,2	1,93
V4T4	1,9	2770	151	147	249	66	28,2	1042	19,2	722,0	1,44
V4T5	2,0	2770	152	148	249	66	26,7	1005	18,2	689,2	1,46

Tabel 6.2. Bæreevner med beregningsmodel i DS411.

Figur 6.1. Sammenhørende værdier af eksperimentel bæreevne N_{test} og bæreevne efter DS411, N_{teori} markeret med x. Fuldt optrukket linie: bedste fit med statistisk model i anneks A. Stiplet line: eksperimentel bæreevne lig beregnet bæreevne.

I tabel 6.2 er vist bestemmelse af bæreevner vha. beregningsmodellen i DS411:1998 [4] I tabellen er $\sigma_{cr} = \frac{N_{cr}}{f_{cm}bh}$, hvor N_{cr} er bestemt af formel (3.16). Det bemærkes, at der er set bort fra armerin-

gens eventuelle bidrag til bæreevnen.

I figur 6.1 er sammenhørende værdier af beregnet bæreevne og eksperimentel målt bæreevne vist. Det ses, at

- Beregningsmodellen giver bæreevner, der er meget mindre end de eksperimentelt målte bæreevner.
- Der er nogen usikkerhed på bæreevnerne bestemt ved beregningsmodellen, når der sammenlignes med forsøgsresultaterne.

Nr	e	l_s	h	h'	b	l_s/i	f_{cm}	$N_{\rm test}$	E_{c0}	$\sigma_{\scriptscriptstyle cr}$	$N_{\rm ny}$	$N_{\rm test}$
												$N_{\rm ny}$
	mm	Mm	mm	mm	mm		MPa	kN	MPa	MPa	kN	
V3T1	3,4	2770	101	94	248	103	28,2	582	34898	21,5	501,8	1,16
V3T2	3,7	2770	100	93	248	104	28,2	531	34898	21,2	485,6	1,09
V3T3	3,3	2770	102	95	248	103	26,7	602	34279	20,8	493,3	1,22
V4T4	1,9	2770	151	147	249	66	28,2	1042	34898	26,6	975,4	1,07
V4T5	2,0	2770	152	148	249	66	26,7	1005	34279	25,3	932,8	1,08

6.2.2 Tværbelastede vægge – ny formel

Tabel 6.3. Bæreevner med ny beregningsmodel.

Figur 6.2. Sammenhørende værdier af eksperimentel bæreevne N_{test} og bæreevne efter ny begningsmodel, N_{ny} markeret med x. Fuldt optrukket linie: bedste fit med statistisk model i anneks A. Stiplet line: eksperimentel bæreevne lig beregnet bæreevne.

I tabel 6.3 er vist bestemmelse af bæreevner vha. den ny beregningsmodel beskrevet i afsnit 3.2.2, formel (3.18). I figur 6.2 er sammenhørende værdier af beregnet bæreevne og eksperimentel målt bæreevne vist. Det ses, at

- Beregningsmodellen giver bæreevner, der er lidt mindre end de eksperimentelt målte bæreevner.
- Der er lille usikkerhed på bæreevnerne bestemt ved beregningsmodellen når der sammenlignes med forsøgsresultaterne.

6.3 Statistisk vurdering af resultater

I dette afsnit beskrives en statistisk vurdering af beregningsmodellerne med samme forudsætninger som i afsnit 4.3 og følgende geometri: h = 123mm, b = 248mm og $l_s/i = 81$.

I tabel 6.4 er resultaterne vist med beregningsmodellen i DS411 og med 'ny formel'. Det ses, at

- Beregningsmodellen i DS411 giver bæreevner, der er meget mindre end de eksperimentelle i gennemsnit 54%, og en usikkerhed der svarer til en variationskoefficient på 14%.
- Ny formel giver bæreevner, der er lidt mindre end de eksperimentelle i gennemsnit 10%, og en lille usikkerhed svarende til en variationskoefficient på 6%.
- Den regningsmæssige bæreevne øges fra 266 kN med beregningsmodel i DS411:1998 til 400 kN med 'ny formel' for middel betontrykstyrke lig 28 MPa. Samtidig bemærkes, at den ny beregningsmodel er konservativ (16% ved en middel betontrykstyrke lig 28 MPa).

Beregning - teori	DS411	Ny formel
f_{cm}	28 MPa	28 MPa
V _{fc}	0,10	0,10
f_{ck}	23,8 MPa	23,8 MPa
$N_{cr}(f_{cm})$	486 kN	715 kN
$N_{cr}(f_{ck})$	412 kN	621 kN
γ_M^{norm}	1,55	1,55
$N_{cr,d}^{norm} = N_{cr}(f_{ck} / \gamma_M^{norm})$	266 kN	400 kN
Borogning - data		
Deregning - data	20	20
n	20	20
b	1,54	1,10
V_{δ}	0,14	0,06
<i>r</i> _k	522 kN	647 kN
γ_M^{data}	1,50	1,39
$N_{cr,d}^{data} = r_k / \gamma_M^{data}$	349 kN	464 kN
$r_k / N_{cr}(f_{ck})$	1,27	1,04
$N_{cr,d}^{data} / N_{cr,d}^{norm}$	1,31	1,16

Tabel 6.3. Statistisk vurdering af forsøgsdata.

7. Sammenfatning af ny beregningsmetode

7.1 Slankhedstal I_s/i < 95

20 centralt belastede, 2 excentrisk belastede og 2 tværbelastede vægge med slankhedstal $l_s/i < 95$ undersøges samlet. I tabel 7.1 og figur 7.1 er vist bæreevner med ny beregningsmodel inkl. excentricitet men uden bidrag fra armering.

Nr	е	l_s	h	h'	b	l_s/i	f_{cm}	$N_{\rm test}$	E _{c0}	$\sigma_{\scriptscriptstyle cr}$	N _{ny}	N _{test}
												$\overline{N_{ny}}$
	mm	mm	mm	mm	mm		MPa	kN	MPa	MPa	kN	
V1BC1	0	2770	122	122	250	79	23,2	707	32685	21,2	646,5	1,09
V1BC2	1	2770	123	123	251	78	23,2	735	32685	21,1	642,0	1,14
V8C3	3	2750	124	124	251	77	50,7	1354	40592	39,1	1158,4	1,17
V8C4	1,5	2750	123	123	251	77	48,3	1246	40184	38,3	1154,1	1,08
V7C5	4	2750	182	182	251	52	26,1	1119	34043	25,4	1110,2	1,01
V7C6	0	2750	184	184	252	52	27,9	1079	34790	27,3	1264,0	0,85
V7C7	0	2750	184	184	253	52	22,6	998	32376	22,2	1033,7	0,97
V7C8	1	2750	183	183	253	52	23,6	1046	32885	23,1	1059,4	0,99
V5C9	2	2750	103	103	250	92	22,6	573	32376	18,9	467,9	1,22
V5C10	2	2750	103	103	251	92	27,9	565	34790	22,3	554,0	1,02
V5C11	3	2750	102	102	251	93	23,6	569	32885	19,2	462,4	1,23
V5C12	0	2750	102	102	251	93	26,1	662	34043	21,6	553,2	1,20
V6C13	4	2750	152	152	247	63	27,9	906	34790	26,3	935,0	0,97
V6C14	5	2750	152	152	248	63	22,6	840	32376	21,5	758,4	1,11
V6C15	3	2750	152	152	248	63	26,1	894	34043	24,8	897,2	1,00
V6C16	1	2750	152	152	249	63	23,6	881	32885	22,6	845,8	1,04
2005 - 1		2850	120	120	400	82	27,3	1100	34548	24,0	1152,1	0,95
2005 - 2		2850	120	120	400	82	27,3	1146	34548	24,0	1152,1	0,99
2005 - 3		2850	120	120	400	82	27,3	1162	34548	24,0	1152,1	1,01
2005 - 4		2850	120	120	400	82	27,3	1210	34548	24,0	1152,1	1,05
V10E14	30	2750	184	124	251	77	27,9	660	34790	25,2	783,0	0,84
V10E15	30	2750	184	124	250	77	22,6	628	32376	20,9	646,5	0,97
V4T4	1,9	2770	151	147	249	66	28,2	1042	34898	26,6	975,4	1,07
V4T5	2,0	2770	152	148	249	66	26,7	1005	34279	25,3	932,8	1,08

Tabel 7.1. Bæreevne med ny beregningsmodel. 24 forsøg med $l_s/i < 95$.

Figur 7.1. Bæreevne med ny beregningsmodel. 24 forsøg med $l_s/i < 95$.

Beregning - teori	Ny formel
f_{cm}	28 MPa
V _{fc}	0,10
f_{ck}	23,8 MPa
$N_{cr}(f_{cm})$	489 kN
$N_{cr}(f_{ck})$	429 kN
γ_M^{norm}	1,55
$N_{cr,d}^{norm} = N_{cr}(f_{ck} / \gamma_M^{norm})$	277 kN
Beregning - data	
n	24
<i>b</i>	1,02
V_{δ}	0,10
r _k	398 kN
γ_M^{data}	1,43
$N_{cr,d}^{data} = r_k / \gamma_M^{data}$	279 kN
$r_k / N_{cr}(f_{ck})$	0,93
$N_{cr,d}^{data} / N_{cr,d}^{norm}$	1,01

Tabel 7.2. Statistisk vurdering af forsøgsdata med middelværdi af betontrykstyrken lig 28 MPa og ny beregningsmodel. 24 forsøg med $l_s/i < 95$.

I tabel 7.2 er vist resultatet af en statistisk vurdering af den ny beregningsmodel med følgende geometri: h = 123mm, b = 248mm, e = 10mm og $l_s/i = 92$.

Resultater viser, at for slankhedstal $l_s / i < 95$

- har ny beregningsmodel en lille usikkerhed på beregningsmodellen ($V_{\delta} = 10\%$) og er en smule konservativ (b = 1.02)
- fås med ny beregningsmodel en regningsmæssig bæreevne, der er lig den regningsmæssige bæreevne, der findes ved den statistiske analyse, dvs. det er OK at benytte 'ny beregningsmodel' med partialkoefficient γ_M^{norm} lig 1,55.

7.2 Slankhedstal $95 \le I_s/i \le 125$

6 excentrisk belastede og 3 tværbelastede vægge med slankhedstal $95 \le l_s / i \le 125$ undersøges samlet. I tabel 7.3 og figur 7.2 er vist bæreevner med ny beregningsmodel inkl. excentricitet men uden bidrag fra armering.

Nr	е	l_s	h	h'	b	l_s/i	f_{cm}	$N_{\rm test}$	E_{c0}	$\sigma_{\scriptscriptstyle cr}$	$N_{ m ny}$	$N_{\rm test}$
												$N_{ m ny}$
	mm	mm	mm	mm	mm		MPa	kN	MPa	MPa	kN	
V1E1	12,5	2770	102	77	250	125	27,2	380	34507	17,1	262,9	1,45
V1AE5	12,5	2750	101	76	251	125	23,2	325	32685	15,4	234,6	1,39
V9E6	20	2750	124	84	249	113	22,6	374	32376	16,7	279,7	1,34
V9E7	20	2750	123	83	248	115	27,9	369	34790	19,0	313,6	1,18
V11E8	20	2750	124	84	251	113	48,3	473	40184	26,0	438,4	1,08
V2E16	25	2750	150	100	252	95	27,2	490	34507	22,0	444,0	1,10
V3T1	3,4	2770	101	94	248	103	28,2	582	34898	21,5	501,8	1,16
V3T2	3,7	2770	100	93	248	104	28,2	531	34898	21,2	485,6	1,09
V3T3	3,3	2770	102	95	248	103	26,7	602	34279	20,8	493,3	1,22

Tabel 7.3. Bæreevne med ny beregningsmodel. 9 forsøg med slankhedstal $95 \le l_s/i \le 125$ og bæreevnen divideret med 1,25.

Figur 7.2. Bæreevne med ny beregningsmodel. 9 forsøg med slankhedstal $95 \le l_s / i \le 125$ og bæreevnen divideret med 1,25.

I tabel 7.4 er vist resultatet af en statistisk vurdering af den ny beregningsmodel med følgende geometri: h = 123mm, b = 248mm, e = 20mm og $l_s/i = 115$.

Resultater viser, at for slankhedstal i intervalet $95 \le l_s / i \le 125$

- har ny beregningsmodel en lille usikkerhed på beregningsmodellen ($V_{\delta} = 13\%$) og er konservativ (b = 1.30)
- fås med ny beregningsmodel en regningsmæssig bæreevne, der er lidt større end den regningsmæssige bæreevne, der findes ved den statistiske analyse, dvs. det er OK at benytte 'ny beregningsmodel' med partialkoefficient γ_M^{norm} lig 1,55.

Beregning - teori	Ny formel
f_{cm}	28 MPa
V _{fc}	0,10
f_{ck}	23,8 MPa
$N_{cr}(f_{cm})$	314 kN
$N_{cr}(f_{ck})$	282 kN
γ_M^{norm}	1,55
$N_{cr,d}^{norm} = N_{cr}(f_{ck} / \gamma_M^{norm})$	182 kN
Beregning - data	
n	9
b	1,30
V_{δ}	0,13
r_k	301 kN
γ_M^{data}	1,49
$N_{cr,d}^{data} = r_k / \gamma_M^{data}$	202 kN
$r_k / N_{cr}(f_{ck})$	1,07
$N_{cr,d}^{data} / N_{cr,d}^{norm}$	1,11

Tabel 7.4. Statistisk vurdering af forsøgsdata med middelværdi af betontrykstyrken lig 28 MPa og ny beregningsmodel. 9 forsøg med slankhedstal $95 \le l_s / i \le 125$ og bæreevnen divideret med 1,25.

7.3 Slankhedstal 125 < I_s/i

8 excentrisk belastede vægge med slankhedstal 125 < l_s/i undersøges samlet. I tabel 7.5 og figur 7.3 er vist bæreevner med ny beregningsmodel inkl. excentricitet men uden bidrag fra armering. Middelværdi af alle $\frac{N_{\text{test}}}{N_{\text{ny}}}$ værdier for de 8 forsøg er 2,1.

Dette viser, at for slankhedstal $l_s/i > 125$ er den ny beregningsmodel meget konservativ.

Bæreevne af betonvægselementer

					1		1		1	1	1	
Nr	е	l_s	h	h'	b	l_s/i	f_{cm}	$N_{\rm test}$	E_{c0}	$\sigma_{\scriptscriptstyle cr}$	$N_{ m ny}$	$N_{\rm test}$
												$N_{ m ny}$
	mm	mm	mm	mm	mm		MPa	kN	MPa	MPa	kN	
V1E2	25	2770	101	51	249	188	26,5	181	34215	9,0	91,2	1,98
V1AE4	25	2750	101	51	253	187	23,2	174	32685	8,6	88,7	1,96
V11E9	40	2750	124	44	252	217	50,7	194	40592	8,4	74,8	2,60
V9E10	40	2750	123	43	248	222	26,1	161	34043	6,6	56,5	2,85
V9E11	40	2750	122	42	252	227	23,6	129	32885	6,1	51,6	2,50
V10E12	60	2750	184	64	250	149	23,6	249	32885	12,4	159,3	1,56
V10E13	60	2750	184	64	250	149	26,1	281	34043	13,1	167,8	1,67
V2E17	50	2750	151	51	250	187	26,5	171	34215	9,1	92,7	1,84

Tabel 7.5. Bæreevne med ny beregningsmodel. 8 forsøg med slankhedstal $125 < l_s/i$ og bæreevnen divideret med 1,25.

Figur 7.3. Bæreevne med ny beregningsmodel. 8 forsøg med slankhedstal $125 < l_s / i$ og bæreevnen divideret med 1,25.

7.4 Sammenfatning

Af den samlede forsøgsbehandling ses at:

- for $l_s/i < 95$ kan den regningsmæssige bæreevne findes af (3.18) (3.21) med anvendelse af partialkoefficienten $\gamma_M^{norm} = 1,55$
- for $95 < \le l_s / i \le 125$ kan den regningsmæssige bæreevne fundet af (3.18) (3.21) og divideret med 1,25 anvendes med partialkoefficienten $\gamma_M^{norm} = 1,55$
- for $125 < l_s / i$ kan på den sikre side anvendes samme fremgangsmåde som for $95 < \le l_s / i \le 125$

<u>Fremgangsmåden for 125</u> $\leq l_s/i$ er valgt som en sikker forenkling, idet der så kun er to tilfælde, nemlig over og under $l_s/i = \overline{95}$.

En statistisk behandling for $125 \le l_s/i$ efter samme model som for de andre to tilfælde vil føre til en større partialkoefficient – og dermed til en faktor større end 1,25, hvis samme partialkoefficient skal anvendes. Det skyldes en stor variationskoefficient på modelusikkerheden, men den forårsages af en ensidig afvigelse, derfor er der basis for yderligere forbedringer af beregningsreglerne for slanke søjler.

8. Konklusion

På baggrund af arbejdet præsenteret i denne rapport kan det anbefales at uarmerede betonvægselementer, der er centralt belastede, excentrisk belastede og/eller tværbelastede beregnes som følger:

For
$$\frac{l_s}{i} \le 95$$

Den regningsmæssige bæreevne N_{Rd} findes af

$$N_{Rd} = \sigma_{crd} A'_{c} = \sigma_{crd} b \left(h - 2e \right)$$
(8.1)

hvor

$$\sigma_{crd} = \frac{f_{cd}}{\sqrt{1 + \left(\frac{f_{ck}}{\pi^2 E_{c0}} \left(\frac{l_s}{i}\right)^2\right)^2}}$$
(8.2)

For 95 < $\frac{l_s}{i}$

Den regningsmæssige bæreevne N_{Rd} findes af

 $N_{Rd} = \sigma_{crd} A'_{c} = \sigma_{crd} b \left(h - 2e \right)$ (8.3)

hvor

$$\sigma_{crd} = \frac{f_{cd}}{1,25\sqrt{1 + \left(\frac{f_{ck}}{\pi^2 E_{c0}} \left(\frac{l_s}{i}\right)^2\right)^2}}$$
(8.4)

idet

$$E_{c0} = 51000 \frac{f_{ck}}{f_{ck} + 13} \tag{8.5}$$

og

$$i = \frac{h'}{\sqrt{12}} = \frac{h - 2e}{\sqrt{12}}$$
(8.6)

b er bredden af væggen *h* er væggens tykkelse *ls* er væggens højde

e er normalkraftens excentricitet

 f_{ck} er betonens karakteristiske trykstyrke

 f_{cd} er betonens regningsmæssige trykstyrke

Baggrunden for anbefalingerne er en analyse af i alt 37 vægforsøg, der er analyseret i overensstemmelse med Anneks A – Statistisk vurdering af bæreevnemodeller. Annekset angiver en metode, der er hentet fra DS 409:2006 og i EN1990, dvs. den anbefalede beregningsmetode tilfredsstiller det danske normsystem med basis i DS409:2006 og det kommende danske normsystem med basis i Eurocodes med tilhørende danske annekser.

9. Referencer

- [1] Ellegaard, P.: Forsøg med 37 betonelementer Centralt, excentrisk og tværbelastede elementer samt tilhørende trykcylindre, bøjetrækemner og armeringsstænger, Institut for Byggeri og Anlæg, november 2006, ISSN 1395-7953 R0601.
- [2] Ellegaard, P. & L. Pilegaard Hansen: Forsøg med 4 centralt belastede betonelementer samt 4 tilhørende betoncylindre, Instituttet for Bygningsteknik, marts 2005, ISSN 1395-7953 R0501
- [3] DS409:2006 Norm for projekteringsgrundlag for konstruktioner. DS 2006.
- [4] DS411:1998 Norm for betonkonstruktioner. DS 1999.
- [5] DS411 tillæg:2006 Kapitel 5-tillæg til DS411. DS 2006.
- [6] EN1990. Eurocode Projekteringsgrundlag for bærende konstruktioner. 2002.
- [7] Sørensen, J.D., J. Munch-Andersen, S. O. Hansen, F. O. Sørensen, H. H. Christensen & P. Lind: Arbejdsnotater ifm. revision af DS409:2006 'Norm for projekteringsgrundlag for konstruktioner', 2006.

10. Acknowledgements

Denne rapport er blevet til i et samarbejde mellem Instituttet for Industri og Byggeri, Syddansk Universitet ved ingeniørdocent lic. techn. Bjarne Chr. Jensen og Institut for Bygningsteknik, Aalborg Universitet ved professor John Dalsgaard Sørensen, HD.

Projektet har været støttet af Betonelementforeningen.

Synspunkter, konklusioner mv. udtrykt i rapporten står dog for forfatternes egen regning.

11. Summary

This report deals with the load carrying capacity of non-reinforced concrete wall elements.

A new design model is proposed. (Se equation (8.1) - (8.6) and figure 3.13.)

The existing design model from the Danish Concrete Code (DS 411) and the proposed new design model is analysed, using 37 new tests and the method for statistical determination of resistance models from EN 1990:2002, which also is identical to the method in the Danish Code DS409:2006.

The analysis shows that the method in the Danish Concrete Code is very conservative, and the proposed new model can be used together with the normal safety coefficients in the Danish code system.

Anneks A - Statistisk vurdering af bæreevnemodeller

Den følgende beskrivelse af den statistiske analyse følger beskrivelsen af regler / modeller i EN1990 [6] og DS409:2006 [3].

På grundlag af observationer af den faktiske opførsel ved forsøg og teoretiske overvejelser udarbejdes en beregningsmodel. Denne models gyldighed kontrolleres ved en statistisk vurdering af alle forsøgsdata. Hvis det er nødvendigt, tilpasses beregningsmodellen derefter, indtil der er opnået tilstrækkelig overensstemmelse mellem de teoretiske værdier og forsøgsdataene.

En afvigelse i forudsigelserne ved brug af beregningsmodellen bør også bestemmes ud fra forsøgene. Det er nødvendigt at kombinere denne afvigelse med afvigelserne for de øvrige variable i beregningsmodellen for at få en samlet angivelse af afvigelser. Disse øvrige variable omfatter:

- afvigelser af materialets styrke og stivhed
- afvigelser af geometriske egenskaber.

Standardproceduren til evaluering er baseret på følgende forudsætninger:

- a) bæreevnemodellen er en funktion af et antal uafhængige variabler X,
- b) et tilstrækkeligt antal forsøgsresultater *n* er tilgængelige,
- c) alle relevante geometriske egenskaber og materialeegenskaber er målt,
- d) der er ingen korrelation (statistisk afhængighed) mellem variablerne i bæreevnemodellen,
- e) alle variabler følger en Log-normal fordeling.

Trin 1: Udarbejdelse af en dimensioneringsmodel

Der udarbejdes en beregningsmodel (dimensioneringsmodel) for konstruktionens teoretiske bæreevne r_t repræsenteret ved bæreevnefunktionen

$$r_t = g_{rt}(\mathbf{X}) \tag{A1}$$

Bæreevnefunktionen bør dække alle relevante grundlæggende variable \mathbf{X} , der påvirker bæreevnen ved den relevante grænsetilstand. Alle grundlæggende parametre bør måles for hvert prøvelegeme *i* (antagelse c).

Figur A1. Sammenhørende data for eksperimentel og beregnet bæreevne.

Bæreevne af betonvægselementer

De faktiske målte egenskaber sættes ind i bæreevnefunktionen, således at der opnås teoretiske værdier for bæreevnen, r_{ti} , der kan danne grundlag for en sammenligning med værdierne opnået ved forsøgene, r_{ei} .

De punkter, der repræsenterer par af sammenhørende værdier (r_{ti}, r_{ei}) , indtegnes i et koordinatsystem som vist i figur A1. Hvis bæreevnefunktionen er nøjagtig og fuldstændig, vil alle punkterne ligge på linjen $\theta = 45^{\circ}$. I praksis vil punkterne ligge noget spredt, men årsagerne til en eventuel systematisk afvigelse fra denne linje bør undersøges for at kontrollere, om dette indikerer fejl i forsøgsprocedurerne eller i bæreevnefunktionen.

Trin 3: Beregn middelværdien af korrektionsfaktoren b

En probabilistisk model for bæreevnen *r* skrives som

$$r = b r_t \delta$$
 (A2)

hvor

b

er det bedste fit til hældningen bestemt ved 'mindste kvadraters metode':

$$b = \frac{\sum_{i=1}^{n} r_{ei} r_{ii}}{\sum_{i=1}^{n} r_{ii}^{2}}$$
(A3)

Den teoretiske bæreevnefunktions middelværdi beregnet ved hjælp af middelværdier X_m af de grundlæggende variable bestemmes af

$$r_m = b r_t(\mathbf{X}_m) \,\delta = b \,\mathbf{g}_{rt}(\mathbf{X}_m) \,\delta \tag{A4}$$

hvor δ

modellerer estimeringsfejlen

Trin 4: Beregn variationskoefficienten for estimerings fejlen

Fejlen δ_i for hver forsøgsværdi r_{ei} bestemmes af

$$\delta_i = \frac{r_{ei}}{b r_{ti}} , i = 1, 2, \dots, n$$
(A5)

Ud fra værdierne δ_i estimeres en værdi af variationskoefficienten V_{δ} ved at definere $\Delta_i = \ln(\delta_i)$ (A6)

Estimatet $\overline{\Delta}$ for forventningsværdien af fejlen $E(\Delta)$ bestemmes af

$$\overline{\Delta} = \frac{1}{n} \sum_{i=1}^{n} \Delta_i \tag{A7}$$

Estimatet s_{Δ}^2 for variansen af fejlen σ_{Δ}^2 bestemmes af

$$s_{\Delta}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} \left(\Delta_{i} - \overline{\Delta} \right)^{2} \tag{A8}$$

Variationskoefficienten for estimeringsfejlen bestemmes endelig af

$$V_{\delta} = \sqrt{\exp\left(s_{\Delta}^{2}\right) - 1}$$

Trin 5: Analysér kompatibiliteten

Forsøgspopulationens kompatibilitet med de forudsætninger, der er benyttet i bæreevnefunktionen, bør analyseres. Hvis spredningen af (r_{ti}, r_{ei}) - værdierne er for stor til at der kan opnås økonomiske regningsmæssige bæreevner, kan spredningen reduceres på en af følgende måder:

- a) korrigere dimensioneringsmodellen, således at der tages hensyn til parametre, der tidligere er taget ude af betragtning,
- b) modificere *b* og V_{δ} ved at opdele den samlede forsøgspopulation i passende delpopulationer, hvor disse yderligere parametres indflydelse kan anses for at være konstant.

For at bestemme, hvilke parametre, der har mest indflydelse på spredningen, kan forsøgsresultaterne inddeles i delmængder i forhold til disse parametre. Formålet er at forbedre bæreevnefunktionen pr. delmængde ved at analysere hver delmængde ved hjælp af standardproceduren. Ulempen ved at opdele forsøgsresultaterne i delmængder er, at antallet af prøvningsresultater i hver delmængde kan blive meget lille.

Ved bestemmelse af fraktilfaktorerne k_n (se trin 7) bestemmes k_n -værdien på grundlag af det samlede antal forsøg i de oprindelige serier.

Trin 6: Bestem de grundlæggende variables variationskoefficient V_{X_i}

Hvis det kan påvises, at forsøgspopulationen er fuldt repræsentativ for variationen i virkeligheden, kan variationskoefficienten V_{X_i} af de grundlæggende variable i bæreevnefunktionen bestemmes ud fra forsøgsdataene. Da dette imidlertid ikke almindeligvis er tilfældet, vil det normalt være nødvendigt at bestemme variationskoefficienten V_{X_i} på basis af forhåndsviden.

Trin 7: Bestem bæreevnens karakteristiske værdi r_k

Ud fra bæreevnefunktionen

$$r = b r_t \,\delta = b g_{rt}(X_1, X_2, ..., X_j) \,\delta$$
(A10)

kan forventningsværdien af bæreevnen E(r) bestemmes af $E(r) = b g_{rt}(E(X_1), E(X_2), \dots E(X_j)) = b g_{rt}(\mathbf{X}_m)$ (A11)

og variationskoefficienten for bæreevnen bestemmes af $V_r^2 = V_{\delta}^2 + V_{rt}^2$

Den del af variationskoefficienten for bæreevnen, der relaterer til usikkerhed for de grundlæggende variable \mathbf{X} kan bestemmes af

$$V_{rt}^{2} = \frac{VAR[g_{rt}(\mathbf{X})]}{g_{rt}^{2}(\mathbf{X}_{m})} \cong \frac{1}{g_{rt}^{2}(\mathbf{X}_{m})} \sum_{i=1}^{j} \left(\frac{\partial g_{rt}}{\partial X_{i}} \sigma_{X_{i}}\right)^{2}$$
(A12)

hvor $VAR[g_{rt}(\mathbf{X})]$ er variansen af $g_{rt}(\mathbf{X})$ og σ_{X_i} er spredningen af X_i .

(A12)

Den karakteristiske bæreevne r_k bestemmes af	
$r_{k} = b g_{rt}(\mathbf{X}_{m}) \exp\left(-k_{\infty}\alpha_{rt}Q_{rt} - k_{n}\alpha_{\delta}Q_{\delta} - 0.5Q^{2}\right)$	(A13)

hvor

$$Q_{rt} = \sigma_{\ln(rt)} = \sqrt{\ln(V_{rt}^2 + 1)}$$
 ~ variationskoefficient for usikkerhed på beregningsmo-
del, der relaterer til usikkerhed fra de grundlæggende vari-
able **X**
~ variationskoefficient for usikkerhed på beregningsmo-
del, der relaterer til usikkerhed på beregningsmo-
del, der relaterer til usikkerhed på selve beregningsmo-
del, der relaterer til usikkerhed på selve beregningsmodel-
len
~ variationskoefficient for samlet usikkerhed på bereg-
ningsmodel

$$\alpha_{rt} = Q_{rt} / Q$$
andel af samlet usikkerhed, der relaterer til usikkerhed fra
de grundlæggende variable X
andel af samlet usikkerhed, der relaterer til usikkerhed på

selve beregningsmodellen k_n fraktilfaktoren fra tabel A1 for tilfældet V_x ukendt

 k_{∞} værdien af k_n for $n \to \infty$ ($k_{\infty} = 1,65$ for 5% fraktil)

 α_{rt} vægtningsfaktoren for Q_{rt}

 α_{δ} vægtningsfaktoren for Q_{δ}

n	ukendt V_X	kendt V_X
1	-	2,33
2	-	2,01
3	3,37	1,90
4	2,63	1,84
5	2,34	1,80
6	2,18	1,78
8	2,01	1,74
10	1,92	1,73
20	1,77	1,69
30	1,73	1,67
8	1,65	1,65

Tabel A1. Fraktilfaktor k_n for 5 % fraktil med ukendt og kendt variationskoefficient som funktion af antal forsøg n.