
Spatial Audio with the W3C Architecture for Multimodal
Interfaces

Stefan Radomski
TU Darmstadt - Telecooperation Group

Hochschulstr. 10
64289 Darmstadt, Germany

radomski@tk.informatik.tu-darmstadt.de

Dirk Schnelle-Walka
TU Darmstadt - Telecooperation Group

Hochschulstr. 10
64289 Darmstadt, Germany

dirk@tk.informatik.tu-darmstadt.de

ABSTRACT
The development of multimodal applications is still ham-
pered by the necessity to integrate various technologies and
frameworks into a coherent application. In 2012, the W3C
proposed a multimodal architecture, standardizing the over-
all structure and events passed between the constituting
components in a multimodal application. In this paper, we
present our experiences with implementing a multimodal ap-
plication employing spatial audio, text-to-speech and XHTML.

General Terms
Standardization; Languages

Keywords
Multimodality, Dialog Managment

1. INTRODUCTION
In 2003, the W3C realized the necessity to standardize appli-
cation development of multimodal applications by introduc-
ing a common conception for such applications as the W3C
Multimodal Interaction (MMI) Framework [5]. By 2012,
the W3C finally published the W3C MMI Architecture rec-
ommendation [3], defining the constituting components in a
multimodal application with their responsibilities and events
passed between them.

In an earlier publication we already outlined our experiences
with providing a component in the W3C MMI architec-
ture [10] and compared the approach to the state of the
art with regard to multimodal interfaces in general. In this
paper, we describe our experiences while implementing such
an application with a focus on speech and spatial audio.

In the W3C MMI architecture, a multimodal application is
decomposed into a nested structure of Interaction Managers
(IM) coordinating Modality Components (MC), with their
respective behavior described by various markup languages

(see figure 1). The IM’s responsibility is to model dialog
management at different levels of granularity and to control
the MCs employed by a multimodal application. The MCs
offer access to a given modality or set thereof by accepting
and processing events or complete modality specific docu-
ments. MC’s them self can again be nested IM’s, modeling
more fine-granular aspects of dialog management like error-
correction, form-filling or even sensor fusion and fission.

Interaction
Manager

Modality
Component

* 1

Event Transport

SCXML
CCXML

XHTML
VoiceXML
EMMA
InkML
SMIL
EmotionML

can be
invoked

as a
parent IM

invoked MCs

Figure 1: Collaboration diagram of MCs and IMs
with their respective markup languages (adapted
from [10]).

A multimodal application is described as a set of XML docu-
ments, with the topmost root controller document describing
the global dialog structure. When such a document is pro-
cessed, its interpreter invokes other MCs, passing modality
specific markup as presentation documents.

One recommendation to express IMs is to employ State
Chart XML (SCXML) [2] documents as an implementation
of Harel state-charts [4] with nested and parallel machine
configurations. An SCXML interpreter will enter an ini-
tial configuration, optionally invoke modality components
and then waits for events. These events are usually passed
by the invoked components, but can also be raised by the
interpreter itself. The SCXML interpreter also features a
datamodel as an embedded scripting language to maintain
a state apart form the current configuration, guard transi-
tions and perform processing on events sent and received.
The SCXML standard itself does not talk about the W3C
MMI architecture at any point, but its concepts lend them-
selves naturally to perform the responsibilities of an inter-
action manager.

The set of events described by the MMI architecture is given
in table 1. An interactive session starts either by an MC
sending a new context request to its parent IM, which will
ultimately be answered by a new context response or by an
IM directly sending an optional prepare request with a sub-
sequent start request to one or more modality components.

Every modality component in the MMI architecture has to
process and respond to the defined life-cycle events for in-
stantiation, pause/resume, keep-alive and termination. Ac-
tual application specific events as e.g. user input or system
output can either be sent directly in the prepare/start re-
quest or in subsequent extension notifications. The set of
defined data fields per event is given in figure 2 and ex-
plained in table 2.

The overall approach of the W3C MMI architecture is to
be distinguished from earlier / other attempts with e.g.
XHTML+Voice [1] or the continuing trend for XHTML [6]
to take on ever more responsibilities, by starting with a
modality-agnostic control language and employ the respec-
tive markup languages to express modality specific interac-
tion.

St
at
us

St
at
us
In
fo

Context

Source
Target
Data

RequestID

Name

Content

ContentURL

PauseRequest
ResumeRequest
CancelRequest
ClearContextRequest
StatusRequest

NewContextRequest

StartResponse
PrepareRespnse
PauseResponse
ResumeResponse
CancelResponse
DoneNotification
NewContextResponse
ClearContextResponse

StatusResponse

StartRequest
PrepareRequest

ExtensionNotification

Figure 2: Data fields of the various W3C MMI
events (adapted from [10]).

2. DEMO APPLICATION
For the demo application, we realized a use-case from an in-
dustrial system to monitor construction equipment deployed
throughout an area. The equipment features various sensors
to indicate its overall state and some critical measurements
like oil-pressure or current velocity. In a series of preprocess-
ing steps, these measurements are refined to geo-referenced
messages indicating various failure or warning conditions.
We assume the availability of these messages and for our
application they are mocked-up using a publish/subscribe
middleware.

In this monitoring application, the geo-referenced ticker mes-
sages are displayed on a map as they are received. Upon
reception, a simple clicking sound is rendered as an audio
notification from the direction relative to the current center
of the map with its volume as a function of the distance.

Table 1: Life-cycle events between IMs and MCs
(adapted from [10]).

Event Origin Description

Requests
Prepare IM Initialize and preload data. Can

be sent multiple times prior to
starting.

Start IM Initiate processing of the docu-
ment given as part of the request
or per URL.

Pause IM Suspend processing of the cur-
rent start request.

Resume IM Resume processing of the current
start request.

Cancel IM Cancel processing of the current
start request.

ClearContext IM Context no longer needed, free
ressources and terminate if ap-
propriate.

Status IM Keep-alive request.

NewContext MC Request for a new context from
the interaction manager.

Responses
Prepare MC If successful, the MC must re-

spond with minimal delay to
start requests.

Start MC Acknowledgement of success or
failure.

Pause MC Acknowledge suspension.
Resume MC Acknowledgement of success or

failure.
Cancel MC Acknowledgement of cancella-

tion.
ClearContext MC Acknowledge end of context.
Status MC Keep-alive response if context is

known, undefined otherwise.

Done MC End of processing reached.

NewContext IM Acknowledgement of success or
failure for a NewContext Re-
quest.

Any
Extension Any Application specific extensions

with arbitrary data.

Furthermore, the messages’ content is spoken via text-to-
speech synthesis (see figure 3). Whenever the map is moved,
the spatial audio component’s listener position is updated to
give the impression of hearing the audio notifications relative
to the center of the map.

To model such an application in the W3C MMI architecture,
we decomposed it into four modality components (i) the
map display described in XHTML, (ii) the speech output via
VoiceXML [7], (iii) a simple custom format for spatial audio
notifications, (iv) a component to subscribe to the messages

Table 2: Life-cycle events between IMs and MCs
(adapted from [10]).

Field Type Description

Source URI The origin of the event.
Target URI The destination of the event.
RequestID UUID A unique identifier for the

request to be included in the
response.

Data Unspecified Application and event spe-
cific data.

Context UUID A unique identifier for the
overall interaction context.

Content Unspecified Encoded control or presen-
tation document.

ContentURL URL The URL where to get the
control or presentation doc-
ument.

Status Enumeration Success or Failure

StatusInfo Unspecified Additional status informa-
tion.

Geo-referenced Ticker Messages

Spatial
Audio

Text To
Speech

Figure 3: Demonstrator for an application of the
W3C MMI architecture.

and deliver them as events and a central root interaction
manager to coordinate the modalities (see figure 4).

start
Invoke XHTML, Spatial Audio, VoiceXML and Ticker Subscription as
Modality Components

idle

Send event to XHTML,
Spatial Audio and
VoiceXML component

Ticker
received

Update listener position
for spatial audio
component

Map Center
moved

XHTML

VoiceXML

Spatial Audio

Ticker
Subscription

Interaction
Manager

Modality
Components

Figure 4: Single root IM and its MCs in the demo.

The single interaction manager is described by a SCXML
document with a single compound state start, in which all
the external modality components are invoked before the
nested state idle is entered. Within the idle state, two
transitions can be taken, both leading back into the idle

state with executable content attached. Whenever the map
in the XHTML component is moved, the respective MC will
return an extension notification event, causing the SCXML
interpreter to send a new position to the spatial audio com-
ponent to update its listener position. Whenever the ticker
subscription component receives some geo-referenced mes-
sages, all other modality components are notified to, respec-
tively, (i) place a marker on the map in the XHTML browser,
(ii) play an audio notification in the spatial audio component
and (iii) speak the message’s text content via the VoiceXML
browser.

2.1 SCXML Interaction Manager
SCXML as a W3C recommendation is still in the draft status
and there are only a few implementations available. Most
of the existing implementations take advantage of the exist-
ing XML and DOM facilities of modern XHTML browsers
and are modeled as documents embedded in XHTML. This
is insufficient to deploy SCXML as an Interaction Manager
in the W3C MMI architecture as it limits the capabilities
of such an implementation. For instance, it is not possi-
ble to invoke browsers for other presentation documents as
Modality Components or receive requests from these.

In light of these limitations, we implemented our own SCXML
interpreter in C++ and made it available as open source1.
It is standard compliant as far as the SCXML draft re-
quires, runs on desktop as well as mobile devices and fea-
tures (among others) the ECMAScript datamodel. Different
types of invokable (modality) components can be provided
as plugins and we implemented the Interaction Manager for
the demo application using this interpreter.

The SCXML draft does not specify what it means to ac-
tually instantiate a modality component in its role as an
Interaction Manager. In fact, the SCXML draft does never
reference the W3C MMI architecture directly - it is the W3C
MMI recommendation that proposes SCXML as a descrip-
tion language for Interaction Managers. The SCXML draft
does specify an interpreters ability to invoke components
with e.g. VoiceXML as an example, suggesting that the lan-
guage feature of invoke is to be used to instantiate modality
components. Nevertheless, the approach to actually send
MMI events is unspecified. They could be created by em-
bedding the respective XML markup constituting the indi-
vidual events or by providing a convenience layer on top
of the events native to SCXML. For the demo application,
we choose the latter approach in a rather pragmatic fash-
ion, which will ultimately lead to interoperability issues as
the transformation from native SCXML to MMI events is
unspecified.

To start the application is to run the SCXML interpreter
with the root controller document. As our SCXML imple-
mentation runs on desktops, as well as mobiles, this enables
us to deploy the applications (or parts thereof) on a mobile
device. The exception is the VoiceXML modality compo-
nent, which has to run on a desktop system as we could not
find an implementation available for mobile devices.

2.2 XHTML Modality Component
1https://github.com/tklab-tud/uscxml

There is a plethora of XHTML compliant browsers available
and the standard, along with its ECMAScript extensions re-
ceived a lot of attention in the last years. XHTML is the
de-facto standard to deliver platform independent graphi-
cal user interfaces. In the past there were a few approaches
to extend its graphical capabilities to include other modal-
ities such as speech, voice recognition and even some lim-
ited support for spatial audio [11]. While we do think that
the approach to model multimodal applications in SCXML
and embed XHTML for graphical user interfaces is ulti-
mately a better solution, it is nevertheless, very important to
reuse the technological investments that went into XHTML
browsers.

As such, every Interaction Manager needs a close integra-
tion with XHTML modality components. The foremost
problem when employing an off-the-shelf XHTML browser
as a modality component is their apparent inability to re-
ceive external events once a document has been loaded. By
using asynchronous XML HTTP requests (XHR) as part
of the standardized ECMAScript implementation in such a
browser it becomes, nevertheless, possible to deliver exter-
nal events via an idiom that came to be known as comet [9]:
An XHR is issued towards the interaction manager by the
XHTML browser as part of the delivered document but not
replied to unless there is some data to be send. When-
ever data arrived, the same XHR is re-issued, keeping the
XHTML constantly asking for data from the Interaction
Manager without polling. Which, in essence, achieves the
same effect as delivering data into a running XHTML ses-
sion.

This technique is employed in our demo application to re-
ceive ticker messages in the XHTML modality component to
be placed on a map and to send the updated map position
once the user moved the displayed map.

2.3 VoiceXML Modality Component
For the VoiceXML Modality Component, we employ the
JVoiceXML implementation. Its latest version already ac-
cepts a subset of the MMI events as defined in the W3C
MMI architecture recommendation, making it rather easy
to send and receive such events. Our SCXML interpreter
features a vxml type for the invoke element, which will send
VoiceXML documents embedded in the SCXML document
or referenced via URL in a StartRequest to an implementa-
tion running on a desktop.

In earlier work, we already described an approach to enable
the output of JVoiceXML to be rendered on any device found
an environment [8]. This is not utilized for now, but we do
plan to integrate the text-to-speech output with a mobile
device.

2.4 Ticker Subscription Modality Component
The ticker subscription component is a plugin of our SCXML
interpreter and employes the uMundo publish/subscribe mid-
dleware2 to receive geo-referenced messages with in a custom
format. The messages are published by an external com-
ponent as a mockup of the processing pipeline as outlined
above.

2https://github.com/tklab-tud/umundo

2.5 Spatial Audio Modality Component
The spatial audio component is, again, realized as a plu-
gin in our SCXML interpreter. It directly accepts SCXML
events, to update the listener position and render audio via
OpenAL. At the moment, this component will only render
a simple clicking noise for every incoming messages from its
geo-referenced position relative to the displayed map’s cen-
ter. Ultimately, this component should distinguish between
the various classes of messages and render different notifica-
tions accordingly.

3. CONCLUSION
Until support for the W3C MMI architecture and its respec-
tive life-cycle events is more common, application developers
still have to rely on kludges and work-arounds to realize and
integrate modality components. Employing the architecture
as defined in the W3C MMI architecture in an actual appli-
cation still leaves many unspecified gaps, e.g. how to map
SCXML events onto MMI events or, when embedding the
markup in the SCXML document, how to fill the dynamic
parts with regard to the SCXML datamodel.

Nevertheless, the overall conception and composition of an
application as a set of interaction managers and modality
components seems more suited to model multimodal appli-
cations than the continued overloading of XHTML to take
on ever more responsibilities.

4. REFERENCES
[1] J. Axelsson, C. Cross, H. W. Lie, G. McCobb, T. V.

Raman, and L. Wilson. XHTML+Voice Profile 1.0,
W3C Note. http://www.w3.org/TR/xhtml+voice/,
Dec. 2001.

[2] J. Barnett, R. Akolkar, R. Auburn, M. Bodell, D. C.
Burnett, J. Carter, S. McGlashan, T. Lager,
M. Helbing, R. Hosn, T. Raman, K. Reifenrath, and
N. Rosenthal. State chart XML (SCXML): State
machine notation for control abstraction. W3C
working draft, W3C, Feb. 2012.
http://www.w3.org/TR/2012/WD-scxml-20120216/.

[3] M. Bondell, D. Dahl, I. Kliche, J. Larson, B. Porter,
D. Raggett, T. Raman, B. H. Rodriguez, M. Selvari,
R. Tumuluri, A. Wahbe, P. Wiechno, and
M. Yudkowsky. Multimodal Architecture and
Interfaces. W3C recommendation, W3C, Oct. 2012.
http://www.w3.org/TR/2012/REC-mmi-arch-
20121025/.

[4] D. Harel and M. Politi. Modeling Reactive Systems
with Statecharts: The Statemate Approach.
McGraw-Hill, Inc., Aug. 1998.

[5] J. A. Larson, T. Raman, D. Raggett, M. Bodell,
M. Johnston, S. Kumar, S. Potter, and K. Waters.
Multimodal Interaction Framework, W3C Note.
http://www.w3.org/TR/2003/NOTE-mmi-framework-
20030506/, May
2003.

[6] S. McCarron, M. Ishikawa, and M. Altheim.
XHTMLâĎć 1.1 - Module-based XHTML - Second
Edition, W3C Recommendation.
http://www.w3.org/TR/2010/REC-xhtml11-
20101123/, Nov.
2011.

[7] M. Oshry, R. Auburn, P. Baggia, M. Bodell, D. Burke,
D. C. Burnett, E. Candell, J. Carter, S. McGlashan,
A. Lee, B. Porter, and K. Rehor. Voice Extensible
Markup Language (VoiceXML) Version 2.1, W3C
Recommendation.
http://www.w3.org/TR/voicexml21/, June 2007.

[8] S. Radomski and D. Schnelle-Walka. VoiceXML for
Pervasive Environments. International Journal of
Mobile Human Computer Interaction, 4(2):18–36,
2012.

[9] I. Russell. Toward server-sent data w/o iframes.
http://infrequently.org/2005/08/

toward-server-sent-data-wo-iframes/, Aug. 2005.
[Online; accessed 02-April-2013].

[10] D. Schnelle-Walka, S. Radomski, and M. Mühlhäuser.
Jvoicexml as a modality component in the w3c
multimodal architecture. Journal on Multimodal User
Interfaces, pages 1–12, 2013.

[11] G. Shires and H. Wennborg. Web Speech API
Specification, W3C Community Group Final Report.
https://dvcs.w3.org/hg/speech-api/raw-file/

tip/speechapi.html, Oct. 2012.

