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TRIGONOMETRIC QUASI-GREEDY BASES FOR Lp(T; w)

MORTEN NIELSEN

Abstract. We give a complete characterization of 2π-periodic weights w for which the
usual trigonometric system forms a quasi-greedy basis for Lp(T;w), i.e., bases for which
simple thresholding approximants converge in norm. The characterization implies that
this can happen only for p = 2 and whenever the system forms a quasi-greedy basis, the
basis must actually be a Riesz basis.

1. Introduction

Let B = {en}n∈N be a bounded Schauder basis for a Banach space X, i.e., a basis
for which 0 < infn ‖en‖X ≤ supn ‖en‖X < ∞. An approximation algorithm associated
with B is a sequence {An}∞n=1 of (possibly nonlinear) maps An : X → X such that for
x ∈ X, An(x) is a linear combination of at most n elements from B. We say that the
algorithm is convergent if limn→∞ ‖x − An(x)‖X = 0 for every x ∈ X. For a Schauder
basis there is a natural convergent approximation algorithm. Suppose the dual system to
B is given by {e∗k}k∈N. Then the linear approximation algorithm is given by the partial
sums Sn(x) =

∑n
k=1 e∗k(x)ek.

Another quite natural approximation algorithm is the greedy approximation algorithm
where the partial sums are obtained by thresholding the expansion coefficients. Greedy
approximation algorithms are often applied successfully in applications such as denoising
and compression using wavelets, see e.g. [3, 4]. The algorithm is defined as follows. For
each element x ∈ X we define the greedy ordering of the coefficients as the map ρ : N → N

with ρ(N) ⊇ {j : e∗j(x) 6= 0} such that for j < k we have either | e∗ρ(k)(x)| < | e∗ρ(j)(x)|
or | e∗ρ(k)(x)| = | e∗ρ(j)(x)| and ρ(k) > ρ(j). Then the greedy m-term approximant to x

is given by Gm(x) =
∑m

j=1 e∗ρ(j)(x)eρ(j). The question is whether the greedy algorithm is
convergent. This is clearly the case for an unconditional basis where the expansion x =
∑∞

k=1 e∗k(x)ek converges regardless of the ordering. However, Temlyakov and Konyagin [7]
showed that the greedy algorithm may also converge for certain conditional bases. This
lead them to define so-called quasi-greedy bases, see [7].

Definition 1.1. A bounded Schauder basis for a Banach space X is called quasi-greedy
if there exists a constant C such that ‖Gm(x)‖X ≤ C‖x‖X for x ∈ X and m ∈ N.

It was proved by Wojtaszczyk that a Schauder basis is quasi-greedy exactly when the
greedy approximation algorithm is convergent.

Theorem 1.2 ([13]). A bounded Schauder basis for a Banach space X is quasi-greedy if
and only if limm→∞ ‖x − Gm(x)‖X = 0 for every element x ∈ X.

Key words and phrases. Quasi-greedy basis, Schauder basis, trigonometric system.
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In this note we consider the standard trigonometric system T := {(2π)−1/2eikx}k∈Z on
T := [−π, π). As is very well known, T is an unconditional (orthonormal) basis for L2(T)
and it is immediate that the greedy algorithm convergences. However, we are not so
fortunate when we consider T in Lp(T), p 6= 2. It was proved by Temlyakov [11] that
T fails to be a quasi-greedy basis for Lp(T), 1 ≤ p ≤ ∞, p 6= 2. This negative result
was also proved independently by Córdoba and Fernández for 1 ≤ p < 2, see [2]. So we
have to look for spaces other than Lp(T) if we want to extend the positive result for T in
L2(T). Konyagin and Temlyakov [8, 9] have considered sufficient conditions on individual
Lp(T)-functions that guarantee norm-convergence of the greedy algorithm.

Another possible path forward is to consider the weighted space

Lp(T; w) :=
{

f : T → C; ‖f‖p
p,w =

∫ π

−π

|f(t)|pw(t) dt < ∞
}

, 1 < p < ∞,

where w is a non-negative 2π-periodic weight. For a suitable choice of weight, we can
make Lp(T; w) larger or smaller than Lp(T). The dual system to T in Lp(T; w) for a
positive weight w is (at least formally)

{

1√
2π

eikx

w(t)

}∞

k=1

and the expansion relative to this system is

f =
1

2π

∑

k∈Z

∫ π

−π

f(t)w(t)−1eiktw(t) dt eikt =
1

2π

∑

k∈Z

〈f, eikt〉eikt,

where 〈·, ·〉 is the standard inner product on L2(T). Thus, the greedy algorithm for T
in Lp(T; w) coincides with the usual greedy algorithm for the trigonometric system. Our
main result in Section 3 gives a complete characterization of the non-negative weights w
on T := [−π, π) such that T forms a quasi-greedy basis Lp(T; w). The characterizing
condition is rather restrictive: we must have p = 2, and for p = 2, T forms a quasi-
greedy basis L2(T; w) if and only if there exists C > 0 such that C−1 ≤ w(t) ≤ C. As
a consequence, we can conclude that T is a quasi-greedy basis L2(T; w) if and only if T
is a Riesz basis for L2(T; w). This is perhaps surprising since a priori, the Riesz basis
property is much more restrictive than the quasi-greedy one. In Section 2 we characterize
the weights w such that T is a Schauder basis for L2(T; w). This characterization, and
our main result in Section 3, is given in terms of the so-called Muckenhoupt A2-condition.
Finally, we consider an application to polynomial weights in Section 4.

2. Trigonometric Schauder bases for Lp(T; w)

In this section we give a characterization of when the trigonometric system form a
Schauder basis for Lp(T; w). We need to have a Schauder basis in order for thresholding
to make sense. The result is a direct consequence of the celebrated result by Hunt,
Muckenhoupt, and Wheeden [6].

Let us first fix the notation. Let ek(t) := (2π)−1/2eikt and let T = {enk
}∞k=1 be the

“natural” ordering of the trigonometric system given by the enumeration {nk}∞k=1 =
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{0,−1, 1,−2, 2, . . .}. We wish to consider both the symmetric partial sum operator

TN(f) =
N

∑

k=−N

〈f, ek〉ek,

where 〈·, ·〉 is the standard inner product on L2(T), and the partial sum operator

SN(f) =
N

∑

k=1

〈f, enk
〉enk

.

We need the Muckenhoupt Ap-condition. We use the convention that 0 · ∞ = 0.

Definition 2.1. A non-negative 2π-periodic function w is called an Ap-weight, 1 < p <
∞, if there exists a constant K < ∞ such that for every interval I ⊂ R,

(

1

|I|

∫

I

w(t) dt

)(

1

|I|

∫

I

w(t)−
1

p−1 dt

)p−1

≤ K.

The family of all Ap-weights is denoted Ap(T).

The two trivial Ap-weights, w ≡ 0 and w ≡ ∞, are not interesting from our point
of view since the associated Lp(T, w) is either trivial or far too large to be useful. We
therefore exclude the trivial weights, and notice that all the remaining Ap-weights satisfy

0 < w(t) < ∞ a.e., and one easily verifies that w,w− 1

p−1 ∈ L1(T). The following theorem
is proved in [6].

Theorem 2.2 ([6]). Let w be a non-negative 2π-periodic weight and consider formally
TN : Lp(T; w) → Lp(T; w), 1 < p < ∞. Let ‖TN‖p,w denote the corresponding operator
norm. Then supN ‖TN‖p,w < ∞ if and only if w ∈ Ap(T).

We now consider the following equivalent version, which gives a nice characterization
of when T forms a Schauder basis for Lp(T; w).

Proposition 2.3. Let w be a non-negative 2π-periodic weight on T. Then T is a Schauder
basis for Lp(T; w), 1 < p < ∞, if and only if w ∈ Ap(T).

Proof. First, suppose w ∈ Ap(T). Then 0 < w(t) < ∞ a.e. and T spans a dense subset
of Lp(T; w). The natural bi-orthogonal system to T is given by {w(t)−1enk

}∞k=1 where we
notice that w(t)−1enk

∈ Lq(T; w), 1/p + 1/q = 1. The partial sum operator is given by

SN(f) =
N

∑

k=1

∫ π

−π

f(t)w(t)−1enk
(t)w(t) dt enk

=
N

∑

k=1

〈f, enk
〉enk

,

so, in particular, S2N+1 = TN for N ≥ 1. Also,

S2N+2 = TN + 〈f, en2N+2
〉en2N+2

,

with

‖〈f, en2N+2
〉en2N+2

‖p,w ≤ C|〈fw1/p, w−1/pen2N+2
〉| ≤ C ′‖f‖p,w,

where we used that w,w−q/p ∈ L1(T). Hence, by this observation and Theorem 2.2, we
obtain supN ‖SN‖p,w < ∞ and it follows that T is a Schauder basis for Lp(T; w). Next,
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suppose T is a Schauder basis for Lp(T; w). Let {dk}∞k=1 ⊂ Lq(T; w) denote the unique
dual (bi-orthogonal) system. We claim that dk = w−1enk

. To verify the claim, notice that

cj,k :=

∫ π

−π

dk(t)enj
(t)w(t) dt = δj,k,

where (cj,k)j are nothing but the Fourier coefficients of dk(t)w(t) ∈ L1(T). Thus, dk(t)w(t) =
enk

(t) a.e. In particular, since |dk(t)| < ∞ a.e., 0 < w(t) < ∞ a.e., and dk(t) =

w(t)−1enk
(t). We have SN(f) =

∑N
k=1〈f, enk

〉enk
. The fact that T is a Schauder basis

now gives

sup
N

‖TN‖p,w ≤ sup
N

‖SN‖p,w < ∞,

and we use Theorem 2.2 to conclude that w ∈ Ap(T). ¤

Remark 2.4. We can move the trigonometric Schauder basis in Lp(T; w) to Lp(T) using
the isometric isomorphism U : Lp(T; w) → Lp(T) defined by U(f) = w1/pf . Thus,

{

w(t)1/penk
(t)

}

k∈N
and

{

enk
(t)

w(t)1/p

}

k∈N

form a bi-orthogonal Schauder basis system in Lp(T) whenever w ∈ Ap(T).

3. Trigonometric quasi-greedy bases for Lp(T; w)

Proposition 2.3 tells us that T is a Schauder basis for Lp(T; w) if and only if w ∈ Ap(T).
In this section we prove the main result of this note: T can be quasi-greedy in Lp(T; w)
only for p = 2, and we characterize the weights w ∈ A2(T) for which T is quasi-greedy in
L2(T; w). First, we need to recall some basic property of quasi-greedy bases.

The first result we state is due to Wojtaszczyk [13], see also [5]. It shows that quasi-
greedy bases are unconditional for constant coefficients.

Lemma 3.1. Suppose {bk}k∈N is a quasi-greedy basis in a Banach space X. Then there
exist constants 0 < c1 ≤ c2 < ∞ such that for every choice of signs εk = ±1 and any
finite subset A ⊂ N we have

(3.1) c1

∥

∥

∑

k∈A

bk

∥

∥

X
≤

∥

∥

∑

k∈A

εkbk

∥

∥

X
≤ c2

∥

∥

∑

k∈A

bk

∥

∥

X
.

We can use Lemma 3.1 together with some basic facts about the geometry of Lp(T; w) to
prove the following result.

Proposition 3.2. Suppose that the trigonometric system T = {enk
}k∈N is quasi-greedy

in Lp(T; w) for some 1 < p < ∞. Then there exist constants 0 < c1 ≤ c2 < ∞ such that
for any ε = {εk}k∈N ∈ {−1, 1}N and any finite subset A ⊂ N,

(3.2) c1|A|1/2 ≤
∥

∥

∑

k∈A

εkenk

∥

∥

Lp(T;w)
≤ c2|A|1/2.

Proof. First we consider the case 1 < p ≤ 2. Let r1, r2, . . . be the Rademacher functions
on [0, 1] defined by rk(t) = sign(sin(2kπt)), and take any finite subset of integers A =
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{k1, k2, . . . , kN} ⊂ N. Put DN =
∑N

l=1 εkl
enkl

. Using Lemma 3.1, and the fact that

Lp(T; w) has cotype 2 (see e.g. [12, Chap. 3]), we obtain

∥

∥DN

∥

∥

Lp(T;w)
≍

∫ 1

0

∥

∥

N
∑

n=1

rn(u) ekn

∥

∥

Lp(T;w)
du ≥ C

(

N
∑

n=1

‖enkl
‖2

Lp(T;w)

)1/2 ≍ N1/2.

Now suppose 2 ≥ p < ∞. Then Lp(T; w) has type 2 ([12, Chap. 3]), and using Lemma 3.1,
we get the estimate

∥

∥DN

∥

∥

Lp(T;w)
≍

∫ 1

0

∥

∥

N
∑

n=1

rn(u) enkl

∥

∥

Lp(T;w)
du ≤ C

(

N
∑

n=1

‖enkl
‖2

Lp(T;w)

)1/2 ≍ N1/2.

The above estimates give ‖DN‖L2(T;w) ≍ N1/2. For 1 < p < 2, we notice that

‖DN‖Lp(T;w) ≤ ‖DN‖L2(T;w) ≍ N1/2,

and (3.2) holds in the range 1 < p ≤ 2. For 2 < p < ∞, we use

N1/2 ≍ ‖DN‖L2(T;w) ≤ ‖DN‖Lp(T;w)

to reach the conclusion. ¤

A sequence {bn}n∈N in a Banach space X is called democratic if there exists D such
that for any finite subsets A,B ⊂ N with the same cardinality |A| = |B|, we have

∥

∥

∑

k∈A

ek

∥

∥

X
≤ D

∥

∥

∑

k∈B

ek

∥

∥

X
.

For any democratic sequence, we can define the fundamental function

(3.3) ϕ(n) := sup
A⊂N:|A|≤n

∥

∥

∑

k∈A

ek

∥

∥

X
.

Proposition 3.2 shows that whenever T is a quasi-greedy basis for Lp(T; w), T is demo-
cratic with fundamental function ϕ(n) ≍ n1/2. For such bases, it is possible to prove a
strong version of the Hausdorff-Young inequality. Let us introduce some notation.

For a sequence {an}∞n=1 we denote by {a∗
n} a non-increasing rearrangement of the se-

quence {|an|}. Then we define the Lorentz norms

‖{an}‖2,∞ := sup
n

n1/2a∗
n and ‖{an}‖2,1 :=

∞
∑

n=1

n−1/2a∗
n.

The following important theorem was proved in [13].

Theorem 3.3 ([13]). Let B = {bk}k∈N be a democratic quasi-greedy basis for a Banach
space X. Suppose that the fundamental function (3.3) associated with B satisfies ϕ(n) ≍
n1/2. Then there exist constants 0 < c1 ≤ c2 < ∞ such that for any coefficients {ak}

c1‖{ak}‖2,∞ ≤
∥

∥

∑

k∈N

akbk

∥

∥

X
≤ c2‖{ak}‖2,1.
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Remark 3.4. Of special interest to us is the fact that ‖ · ‖2,1 and ‖ · ‖2,∞ assign (approxi-
mately) the same norm to flat sequence. More precisely, for B = {bk}k∈N a quasi-greedy
basis satisfying the hypothesis of Theorem 3.3, there exist c1, c2 > 0 such that for any
unimodular sequence {ak}k∈Λ, Λ ⊂ N (i.e., |ak| = 1 for k ∈ Λ), we have

(3.4) c1|Λ|1/2 ≤
∥

∥

∑

k∈Λ

akbk

∥

∥

X
≤ c2|Λ|1/2,

since ‖{ak}k∈Λ‖2,1 ≍ ‖{ak}k∈Λ‖2,∞ ≍ |Λ|1/2. The estimate (3.4) will be used below to
prove our main result, Theorem 3.5.

Theorem 3.5. Let w be a non-negative 2π-periodic weight. Suppose T is a quasi-greedy
basis for Lp(T; w), 1 < p < ∞. Then p = 2, w ∈ A2, and there exists a positive constant
C such that C−1 ≤ w(t) ≤ C a.e.

Proof. Suppose T is a quasi-greedy basis for Lp(T; w). Then, in particular, T is a Schauder
basis for Lp(T; w) and w ∈ Ap by Proposition 2.3. Now we use the Dirichlet kernel

DN :=
∑N

k=1 enk
to study w(t). For each u ∈ T, we have enk

(t − u) = enk
(t)enk

(−u) with
|enk

(−u)| = 1, and we obtain

DN(t − u) =
N

∑

k=1

enk
(−u)enk

(t).

Now the estimate (3.4) gives uniformly in u,

c2
1N ≤

∫ π

−π

∣

∣

N
∑

k=1

enk
(t − u)

∣

∣

2
w(t) dt ≤ c2

2N,

so

(3.5) c2
1 ≤

∫ π

−π

1

N

∣

∣

N
∑

k=1

enk
(t − u)

∣

∣

2
w(t) dt ≤ c2

2.

Notice that 1
N

∣

∣

∑N
k=1 enk

(t−u)
∣

∣

2
is an approximation to the identity at the point u. Thus,

whenever u ∈ T is a Lebesgue point of w ∈ L1(T), we obtain

c2
1 ≤ w(u) = lim

N→∞

∫ π

−π

1

N

∣

∣

N
∑

k=1

enk
(t − u)

∣

∣

2
w(t) dt ≤ c2

2.

We conclude that c2
1 ≤ w(t) ≤ c2

2 a.e. Now suppose p 6= 2. By Proposition 3.2,
‖DN‖Lp(T;w) ≍ N1/2, and it follows from Hölder’s inequality that

N1/2 ≍ ‖DN‖p ≤ ‖DN‖θ
1‖DN‖1−θ

2 , 1 < p < 2, θ =
2

p
− 1,

or

N1/2 ≍ ‖DN‖2 ≤ ‖DN‖θ
1‖DN‖1−θ

p , 2 < p < ∞, θ =
p − 2

2p − 2
.

In both cases we can conclude that ‖DN‖L1(T;w) ≍ N1/2 since ‖DN‖L2(T;w) ≍ N1/2. How-
ever, this is a contradiction since we have the well-known estimate of the Lebesgue con-
stant for T ,

‖DN‖L1(T;w) ≍ ‖DN‖L1(T) ≤ C log(N),
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where we used c2
1 ≤ w(t) ≤ c2

2 a.e. Thus, T quasi-greedy implies that p = 2, w ∈ A2(T)
and c2

1 ≤ w(t) ≤ c2
2 a.e. ¤

Theorem 3.5 shows that the class of weights w ∈ A2(T) such that T is a quasi-greedy
basis for L2(T; w) is very restrictive. In fact, the are no conditional quasi-greedy bases for
L2(T; w) as the following corollary shows.

Corollary 3.6. Let w be a positive 2π-periodic weight for which T is a quasi-greedy basis
for L2(T; w). Then T is a Riesz basis for L2(T; w).

Proof. Suppose T is a quasi-greedy basis for L2(T; w). According to Theorem 3.5, there
exists C > 0 such that C−1 ≤ w(t) ≤ C a.e. Hence, for any finite sequence {ak}k,

C−1

∫ π

−π

∣

∣

∑

k

akenk
(t)

∣

∣

2
dt ≤

∫ π

−π

∣

∣

∑

k

akenk
(t)

∣

∣

2
w(t) dt ≤ C

∫ π

−π

∣

∣

∑

k

akenk
(t)

∣

∣

2
dt

In particular, ‖
∑

k akenk
‖2

2,w ≍ ‖{ak}k‖2
ℓ2 , which shows that T is a Riesz basis for

L2(T; w). ¤

4. An application

Here we consider an application for general polynomial weights of the results obtained
in the previous two sections.

Proposition 4.1. Let P be a polynomial of degree n with |P (−π)| = |P (π)|. For −1/n <
µ < 1/n, T is a Schauder basis for L2(T; |P |µ). For such a weight |P |µ, T is a quasi-
greedy (and thus Riesz) basis for L2(T; |P |µ) if and only if P has no zeros on T.

Proof. Stein and Ricci [10] proved that for n ∈ N and 0 < µ < 1/n there exists a uniform
constant c := c(n, µ) such that

∫ 1

−1

|P (t)|−µdt ≤ c

(
∫ 1

−1

|P (t)|dt

)−µ

,

where P is any polynomial of degree n. It follows by Hölder’s inequality that
∫ 1

−1

|P (t)|µdt ≤ c′
(

∫ 1

−1

|P (t)|dt

)µ

≤ c′c

(
∫ 1

−1

|P (t)|−µdt

)−1

,

which together with the fact that the class of polynomials of degree n is invariant under
any dilation and translation, proves that |P |µ is in A2(T) for −1/n < µ < 1/n, provided
|P (−π)| = |P (π)|. Thus, for −1/n < µ < 1/n, T is a Schauder basis for L2(T; |P |µ).
Obviously |P |µ is bounded on [−π, π] so T is a quasi-greedy (and thus a Riesz) basis for
L2(T; |P |µ) if and only if P has no zeros on T. ¤

Example 4.2. This is the famous example by Babenko of a conditional Schauder basis
for L2(T) [1]. Using Remark 2.4 and Proposition 4.1, we see that the system {|t|αenk

}∞k=1

forms a Schauder basis for L2(T) for 0 < α < 1/2 since, according to Proposition 4.1,
|t|µ ∈ A2 for −1 < µ < 1. The basis is conditional since t has a zero on T.
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