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TYPE 1,1-OPERATORS DEFINED BY

VANISHING FREQUENCY MODULATION

JON JOHNSEN

ABSTRACT. This paper presents a general definition of pseudo-differential operators of type 1,1;
the definition is shown to be the largest one that is both compatible with negligible operators

and stable under vanishing frequency modulation. Elaborating counter-examples of Ching and

Hörmander, type 1,1-operators with unclosable graphs are proved to exist; others are shown
to lack the microlocal property as they flip the wavefront set of an almost nowhere differen-

tiable function. In contrast the definition is shown to imply the pseudo-local property, so type

1,1-operators cannot create singularities but only change their nature. The familiar rule that the
support of the argument is transported by the support of the distribution kernel is generalised to

arbitrary type 1,1-operators. A similar spectral support rule is also proved. As no restrictions
appear for classical pseudo-differential operators, this is a new result which in many cases makes

it unnecessary to reduce to elementary symbols. As an important tool, a convergent sequence of

distributions is said to converge regularly if it moreover converges as smooth functions outside the

singular support of the limit. This notion is shown to allow limit processes in extended versions

of the formula relating operators and kernels.

1. INTRODUCTION

Pseudo-differential operators are generally well understood as a result of extensive analysis
since the mid 1960s; but there is an exception for operators of type 1,1. These have symbols in
the Hörmander class Sd1,1(R

n×Rn), which is sometimes called exotic because of the operators’
atypical properties.
Recall that a symbol a(x,η) ∈C∞(R2n) belongs to Sd1,1(R

n×Rn) if it for all multiindices α ,

β satisfies the estimates

|Dα
ηD

β
x a(x,η)| ≤Cα ,β (1+ |η |)d−|α |+|β |. (1.1)

For such a symbol, a(x,D)u=OP(a)u=Au is defined at least for u in the Schwartz spaceS (Rn)

by the usual integral, where Fu(ξ ) =
∧
u(ξ ) =

∫
Rn e

− ix·ξu(x)dx denotes the Fourier transforma-
tion,

a(x,D)u(x) = (2π)−n
∫

Rn
eiξ ·ηa(x,η)Fu(η)dη . (1.2)

The purpose of the present article is to suggest a general definition of operators with type 1,1-
symbols; that is, to define a(x,D)u for u in a maximal subspace D(A) such that

S (Rn) ⊂ D(A) ⊂ S
′(Rn). (1.3)

2000 Mathematics Subject Classification. 35S05,47G30.
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2 JON JOHNSEN

Seemingly this question has not been addressed directly before. But as a fundamental contribu-
tion, L. Hörmander [Hör88, Hör89] used Hs-estimates to extend type 1,1-operators by continuity
from S (Rn) and characterised the possible s up to a limit point.
For other questions it seems necessary to have an explicit definition of type 1,1-operators.
Consider eg the pseudo-local property,

singsuppAu⊂ singsuppu for all u ∈ D(A). (1.4)

In the proof of this, it is of course of little use just to know the action of A on u ∈ S (Rn), as
both sets are empty for such u. And to apply the fact that the distribution kernel K(x,y) of A is
C∞ for x 6= y one would have to know more on A and its domain D(A) than just (1.3).
To give a brief account of the present contribution, let ψ ∈C∞

0 (Rn) denote an auxiliary function
for which ψ = 1 in a neighbourhood of the origin. Then the frequency modulated versions of
u ∈ S ′(Rn) and of a(x,η) with respect to x are given for m ∈ N by

um = ψ(2−mD)u= F
−1(ψ(2−m·)Fu) (1.5)

am = ψ(2−mDx)u= F
−1
ξ→x

(ψ(2−mξ )Fx→ξa(ξ ,η)). (1.6)

Therefore a(x,D) is said to be stable under vanishing frequency modulation if for every u in its
domain

am(x,D)um −−−→
m→∞

a(x,D)u in D
′(Rn). (1.7)

Whilst classical pseudo-differential operators have this property, the purpose is to show that
(1.7) can be used as a definition of a(x,D)u when a ∈ S∞

1,1(R
n×Rn) is given; hereby D(a(x,D))

consists of the u ∈ S ′(Rn) for which the limit exists independently of ψ . The limit in (1.7)
serves as a substitute of the usual extensions by continuity from S (Rn).
In this introduction it is to be understood in (1.7) that, for all u ∈ S ′(Rn),

am(x,D)um = OP(am(x,η)ψ(2−mη))u, (1.8)

where the right-hand side is in OP(S−∞). The expression am(x,D)um itself is brief, but prob-
lematic if taken literally since also am(x,η) ∈ S∞

1,1 . However, using that suppF (um) ⋐ Rn , it

will later be seen that am(x,D)um can be defined via (1.8) and that this is compatible with (1.7);
thenceforth am(x,D)um will be a short and safe notation.
The definition is discussed in detail below, and shown to imply that type 1,1-operators are
pseudo-local; cf (1.4). In comparison they do not in general preserve wavefront sets, for a version
of a well-known example due to Ching is shown to flip the wavefront set WF(wθ ) = Rn×(R+θ)
into Rn× (R+(−θ)) for some wθ , that when the order d ∈ ]0,1] is an almost nowhere differen-
tiable function.
Moreover the following well-known support rule is extended to arbitrary operators a(x,D) in
OP(S∞

1,1(R
n×Rn)) with distribution kernel K ,

suppa(x,D)u⊂ suppK ◦ suppu for all u ∈ D(a(x,D)). (1.9)

Here suppK◦suppu :=
{
x∈Rn

∣∣ ∃y∈ suppu : (x,y)∈ suppK
}
, whereby suppK is thought of as

a relation on Rn that maps, or transports, every set M ⊂ Rn to the set (suppK)◦M of everything
related to an element of M .
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There is an analogous result which seems to be new, even for classical symbols a ∈ S∞
1,0 .

It gives a spectral support rule, relating frequencies ξ ∈ suppF (Au) to those in suppFu, cf
Theorem 8.4: if only u ∈ D(A) is such that (1.7) holds in the topology of S ′(Rn), then

suppF (a(x,D)u) ⊂ Ξ, (1.10)

Ξ =
{

ξ +η
∣∣ (ξ ,η) ∈ suppFx→ξa, η ∈ suppFu

}
. (1.11)

This is highly analogous to (1.9), for Ξ = suppK ◦ suppFu, where K is the kernel of the
conjugated operator Fa(x,D)F−1 . There is a forerunner of (1.10)–(1.11) in [Joh05], where
it was only possible to cover the case Fu ∈ E ′(Rn), as the information on D(a(x,D)) was
inadequate without the consistent definition in (1.7).
The spectral support rule (1.10) often makes it possible to by-pass a reduction to elementary
symbols, that were introduced by Coifman and Meyer [CM78] in order to control spectra like
suppFa(x,D)u in the Lp-theory of general pseudo-differential operators. Use of (1.10)–(1.11)
simplifies the theory, for it would be rather inconvenient to add in (1.7) an extra limit process
resulting from approximation of a(x,η) by elementary symbols.
Both (1.9) and (1.10) are established as consequences of the formula relating an operator A to
its kernel K ∈ D ′(Rn×Rn),

〈Au, v〉 = 〈K, v⊗u〉. (1.12)

It is shown below that also the right-hand side makes sense as it stands for u ∈D ′(Rn) (although
K and v⊗u are distributions then) as long as v is a test function such that

suppK
⋂
suppv⊗u⋐ Rn×Rn, singsuppK

⋂
singsuppv⊗u= /0. (1.13)

That (1.13) suffices for (1.12) follows from the extendability of the bilinear form 〈 ·, · 〉 in dis-
tribution theory to pairs (u, f ) fulfilling analogous conditions. This simple extension of 〈u, f 〉
has the advantage that 〈u, f ν 〉→ 〈u, f 〉 when u or f has compact support and f ν ∈C∞(Rn) are
such that

f ν −−−→
ν→∞

f both in D
′(Rn) and in C∞(Rn \ singsupp f ). (1.14)

Such sequences ( f ν) are below said to converge regularly to f ; they are easily obtained by
convolution. In these terms, 〈 ·, · 〉 is stable under regular convergence if one entry is in E ′ .
This set-up is convenient for the derivation of (1.12)–(1.13) for type 1,1-operators. Indeed, the
kernel Km of the approximating operator a

m(x,D)um equals K ∗F−1(ψm⊗ψm) conjugated by
the coordinate change (x,y) 7→ (x,x− y), so that Km converges regularly to K ; so (1.12) results
in the limit m→ ∞. Based on this the support rules (1.9)–(1.10) follow in a natural way.
However, the simple criterion in (1.13) and its stability under regular convergence, that might
be known, could be useful also for other questions.

1.1. On known results for type 1,1-operators. The pathologies of type 1,1-operators were
revealed around 1972–73. On the one hand, Ching [Chi72] gave examples of symbols a ∈ S01,1
for which the corresponding operator is unbounded from L2(Rn) to L2(K) for every K ⋐ Rn
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(this operator is moreover unclosable in S ′(Rn), cf Lemma 3.2 below). On the other hand,
E. M. Stein (1972-73) showed Cs-boundedness1 for s> 0 and d = 0.
Afterwards C. Parenti and L. Rodino [PR78] discovered that some type 1,1-operators do not
preserve wavefront sets.
Around 1980, Y. Meyer [Mey81a, Mey81b] obtained the famous property that a composition
operator u 7→ F(u), for a fixed C∞-function F with F(0) = 0, acting on u∈Hsp(R

n) for s> n/p,
can be written

F(u) = au(x,D)u (1.15)

for a specific u-dependent symbol au ∈ S
0
1,1 . Namely, when 1= ∑∞

j=0Φ j is a Littlewood–Paley
partition of unity,

au(x,η) =
∞

∑
j=0

m j(x)Φ j(η), m j(x) =
∫ 1

0
F ′(∑
k< j

Φk(D)u(x)+ tΦ j(D)u(x))dt. (1.16)

This gave a convenient proof of the fact that u 7→ F(u) maps Hsp(R
n) into itself for s > n/p.

Indeed, this follows as Meyer for general a ∈ Sd1,1 established continuity

Hs+dp (Rn)
a(x,D)
−−−→ Hsp(R

n) for s> 0, 1< p< ∞. (1.17)

It was also realised that type 1,1-operators show up in J.-M. Bony’s paradifferential calculus
[Bon81] of non-linear partial differential equations.
In the wake of this, T. Runst [Run85] treated continuity in Besov spaces Bsp,q for p ∈ ]0,∞]
and in Lizorkin–Triebel spaces Fsp,q for p ∈ ]0,∞[ , although the necessary control of the fre-
quency changes created by a(x,D) was not quite achieved in [Run85] (as explained in [Joh05]).
However, this may be remedied by use of (1.10).
Around the same time G. Bourdaud proved that a type 1,1-operator a(x,D) : C∞

0 (Rn) →
D ′(Rn) of order d = 0 is L2-bounded if and only if its adjoint a(x,D)∗ : C∞

0 (Rn) → D ′(Rn) is
another type 1,1-operator; cf [Bou83] and [Bou88, Th 3]. Except for a limit point, L. Hörmander
characterised the s∈R for which a given a∈ Sd1,1 is bounded H

s+d→Hs; cf [Hör88, Hör89] and
also [Hör97] where a few improvements are added. As a novelty in the analysis, an important
role was shown to be played by the twisted diagonal

T = {(ξ ,η) ∈ Rn×Rn | ξ +η = 0}. (1.18)

Eg, if the partially Fourier transformed symbol
∧
a(ξ ,η) := Fx→ξa(x,η) vanishes in a conical

neighbourhood of a non-compact part of T , ie if

∃C ≥ 1: C(|ξ +η |+1) ≤ |η | =⇒
∧
a(x,η) = 0, (1.19)

then a(x,D) : Hs+d → Hs is continuous for every s ∈ R. Moreover, continuity for all s > s0
was shown to be equivalent to a specific asymptotic behaviour of

∧
a(ξ ,η) at T . For operators

1Noted by Y. Meyer [Mey81a], with reference to lecture notes at Princeton 1972/73. E. M. Stein stated the Cs-

result in [Ste93, VII.1.3]; at the end of Ch. VII its origins were given as “Stein [1973a]” (that is Singular integrals

and estimates for the Cauchy-Riemann equations, Bull. Amer. Math. Soc. 79 (1973), 440–445) but probably should

have been “Stein [1973b]”: “Pseudo-differential operators, Notes by D.H. Phong for a course given at Princeton

University 1972-73”.
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with additional properties, a symbolic calculus was also developed together with a sharp Gårding
inequality; cf [Hör88, Hör89].
For domains of type 1,1-operators, the scale Fsp,q(R

n) of Lizorkin–Triebel spaces was recently

shown to play a role, for it was proved in [Joh04, Joh05] that for all p ∈ [1,∞[ , every a ∈ Sd1,1
gives a bounded linear map

Fdp,1(R
n)
a(x,D)
−−−→ Lp(R

n). (1.20)

This is a substitute of boundedness from Hdp (or of Lp-boundedness for d = 0), as Hsp = Fsp,2 )

Fsp,1 for 1 < p < ∞. Inside the Fsp,q and B
s
p,q scales, (1.20) gives maximal domains for a(x,D)

in Lp , for it was noted in [Joh05, Lem. 2.3] that already Ching’s operator is discontinuous from

Fdp,q to D ′ and from Bdp,q to D ′ for every q > 1. Continuity was proved in [Joh05] for s >
max(0, np −n), 0< p< ∞, as a map

Fs+dp,q (Rn)
a(x,D)
−−−→ Fsp,r(R

n) for r ≥ q, r > n
n+s . (1.21)

Moreover, (1.19) was shown to imply (1.21) for every s ∈ R, r = q. (Analogously for Bsp,q .)

As indicated, a general definition of a(x,D)u for a given symbol a ∈ Sd1,1(R
n×Rn) seems to

have been unavailable hitherto. L. Hörmander [Hör88, Hör89] estimated Au for arbitrary u ∈
S (Rn) in the Hs-scale, which of course gives a uniquely defined bounded operator A : Hs+d →
Hs; and an extension of A to

⋃
s>s0H

s+d(Rn) for some limit s0 or possibly even s0 = −∞,
depending on a.
R. Torres [Tor90] also estimated Au for u ∈ S (Rn), using the framework of M. Frazier
and B. Jawerth [FJ85, FJ90]. This gave unique extensions by continuity to maps Fs+dp,q (Rn) →
Fsp,q(R

n) for all s so large that, for all multiindices γ ,

0≤ |γ| <max(0,
n

p
−n,
n

q
−n)− s =⇒ A∗(xγ) = 0. (1.22)

(As noted in [Tor90], this is related to the conditions imposed at the twisted diagonal T by
L. Hörmander.) This approach will at most define A on

⋃
Fsp,q(R

n).
In addition it was shown in [Joh05, Prop. 1] that every type 1,1-operator A extends to the space

F−1E ′(Rn), that contains eg polynomials ∑|α |≤k cαx
α . As these do not belong to

⋃
Hs , nor to⋃

Fsp,q , this development only emphasises the need for a general definition of type 1,1-operators,

without reference to spaces other than S ′(Rn).

1.2. Remarks on the construction. As indicated above, the extension of an operator a(x,D) of
type 1,1 from the Schwartz space S (Rn) to a larger domain D(a(x,D)) in S ′(Rn) can roughly
be made as follows:
Introducing am(x,η) = F

−1
ξ→x

(
∧
a(ξ ,η)ψm(ξ )), ψm = ψ(2−m·) for a cut-off function ψ ∈

C∞
0 (Rn) with ψ = 1 around the origin, then a(x,D)u is defined when u ∈ S ′(Rn) is such that
aψ(x,D)u := limm→∞OP(a

m(x,η)ψm(η)) exists in D ′(Rn) and does not depend on ψ . And in
the affirmative case,

a(x,D)u= aψ(x,D)u= lim
m→∞
OP(am(x,η)ψm(η))u. (1.23)
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Fundamentally, the role of am(x,η) is to make the domain of a(x,D) as large as possible: since
a(x,η) is less special than am(x,η), the demands on the pair (a,u) would be stronger if only the
OP(a(x,η)ψm(η))u were required to converge. And the domain of a(x,D) would possibly also
be smaller, had not the same ψ been used twice to form am(x,η)ψm(η). Finally, to take the limit
in S ′(Rn) instead might also exclude some u from D(a(x,D)). (However, the D ′-limit makes
it more demanding to justify compositions b(x,D)a(x,D) of type 1,1-operators.)
Although (1.23) is an unconventional definition, it is not as arbitrary as it may seem. In fact, cf
Theorem 5.9 below, the resulting map a 7→ a(x,D), a ∈ S∞

1,1 , can be characterised as the largest

extension of (1.2) that both gives operators stable under vanishing frequency modulation and is
compatiblewith OP on S−∞ . For δ < ρ it is even compatible with the classes OP(S∞

ρ,δ (Rn×Rn))

in a certain local sense, termed strong compatibility below.
In addition to this, there are at least three simple indications that the definition is reason-
able. First of all, if the symbol a(x,η) is classical, say a ∈ S∞

1,0(R
n × Rn), then the usual

S ′-continuous extension of OP(a) fulfils OP(am(x,η)ψm(η))u→ OP(a)u as a consequence
of standard facts (cf Proposition 5.4 below).
Secondly, the definition also gives back the usual product au, when a(x) is a symbol in S∞

1,1

independent of η . In fact a ∈ C∞
b (Rn) then, and since am(x)ψm(η) ∈ S−∞(Rn×Rn), every

u ∈ S ′ gives the following

OP(am(x)ψm(η))u= am ·F−1(ψm
∧
u) = amum −−−→

m→∞
au. (1.24)

So despite the apparent asymmetry in OP(amψm)u, where only the symbol is subjected to fre-
quency modulation, the definition is consistent with the product au. However, the expression
am(x,D)um , that enters (1.7), is symmetric in this sense.

Remark 1.1. Analogously to (1.23), there is an extension of the pointwise product (u1,u2) 7→
u1u2 , where u j ∈ L

loc
p j

(Rn) for j= 1,2 with 1
p1

, 1
p2

, 1
p1

+ 1
p2
∈ [0,1], to the pairs (u,v) inS ′(Rn)×

S ′(Rn) for which there is a ψ -independent limit

π(u,v) := lim
m→∞
umvm (1.25)

This general product π(u,v) was introduced and extensively analysed with paramultiplication in
[Joh95]; eg the convergence in (1.24) follows directly from [Joh95, Prop. 3.6]. By (1.24) one
recovers π(a,u) from (1.23) when the symbol a(x,η) is independent of η .

Thirdly, continuity properties of a(x,D) can be conveniently analysed using Littlewood–Paley
techniques applied to both the symbol a and the distribution u. This is facilitated because the
Fourier multiplication by ψm occurs in both entries of a

m(x,D)um . Indeed, one can take ψm to be
the first m+1 terms in a Littlewood–Paley partition of unity 1= ∑∞

j=0Φ j ; then bilinearity gives
a direct transition to the paradifferential splitting that has been used repeatedly for Lp continuity
results since the 1980s. The reader is referred to Section 9 for details.

The definition sketched in (1.7) was used implicitly in recent works of the author [Joh04,
Joh05]. In the present article, the purpose is to introduce the definition of a(x,D)u in (1.23)
systematically and to show that it is consistent with (1.2).
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Section 2 gives a review of notation and some preparations, whereas in Section 3 the special
properties of type 1,1-operators are elaborated. Section 4 deals with preliminary extensions
of type 1,1-operators, using cut-off techniques. The general definition of a(x,D) is given in
Section 5, where it is proved to be consistent with the usual one if, say a(x,η) coincides (for η
running through an open set Σ ⊂ Rn) with an element of the classical symbol class Sd1,0 , or S

d
ρ,δ

with ρ > δ . Section 6 contains the proof of the pseudo-local property. As a preparation, extended
action of the bracket 〈 ·, · 〉 from distribution theory is studied in Section 7, with consequences for
distribution kernels. A control of suppa(x,D)u is proved in Section 8, as is the spectral support
rule in a general version. Finally Section 9 deals with continuity in the Sobolev spaces Hsp and a
quick review of the consequences for composite functions.

2. NOTATION AND PREPARATIONS

The distribution spaces E ′ , S ′ and D ′ , that are dual to C∞ , S and C∞
0 respectively, have the

usual meaning as in eg [Hör85]. OM(Rn) stands for the space of slowly increasing functions, ie
the f ∈C∞(Rn) such that to every multiindex α there are Cα > 0, Nα > 0 such that |Dα f (x)| ≤
Cα(1+ |x|)Nα for all x ∈ Rn . In addition C∞

b denotes the Frechét space of smooth functions with
bounded derivatives of any order. The Sobolev space Hsp(R

n) with s ∈ R and 1 < p < ∞ is

normed by ‖u‖Hsp = ‖F−1((1+ |ξ |2)s/2Fu)‖p , whereby ‖u‖p = (
∫
Rn |u|

p dx)1/p is the norm of

Lp(R
n); similarly ‖ · ‖∞ denotes that of L∞(Rn). That a subset M of Rn has compact closure is

indicated by M ⋐ Rn . As usual c denotes a real constant specific to the place of occurrence.

With the short-hand 〈ξ 〉 = (1+ |ξ |2)1/2 , a symbol a(x,η) is said to be in Sdρ,δ (Rn×Rn) if

a ∈C∞(R2n) and for all multiindices α , β there exists Cα ,β ≥ 0 such that

|Dα
ξD

β
x a(x,ξ )| ≤Cα ,β 〈ξ 〉

d−ρ|α |+δ |β |. (2.1)

Here it is assumed that the order d ∈R and 0< ρ ≤ 1, 0≤ δ ≤ 1 with δ ≤ ρ , which is understood
throughout unless further restrictions are given.
Along with this there is a pseudo-differential operator a(x,D) defined on every u in the
Schwartz space S (Rn) by the Lebesgue integral

a(x,D)u(x) = OP(a)u(x) = (2π)−n
∫

Rn
eix·ηa(x,η)

∧
u(η)dη . (2.2)

Here η is the dual variable to y ∈ Rn (u is seen as a function of y), while ξ is used for the dual
variable to x. If ψ ∈C∞

0 (Rn) and ψ = 1 near 0, then ψm = ψ(2−m·) gives:

Lemma 2.1. am(x,η) = ψm(Dx)a(x,η) belongs to Sdρ,δ (Rn×Rn) when a itself does so, and

a(x,η) = limm→∞ a
m(x,η)ψm(η) holds in Sd

′

ρ,δ (Rn×Rn) when d′ ≥ d+δ and d′ > d.

Proof. Since a ∈ Sdρ,δ is bounded with respect to x, the first part results from

|Dβ
xD

α
ηa
m(x,η)| ≤

∫
|
∨
ψ(y)||Dβ

xD
α
ηa(x−2

−my,η)|dy≤C′α ,β 〈η〉d−ρ|α |+δ |β |. (2.3)
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Since ψ(0) = 1 the mean value theorem gives am → a in Sd+δ
ρ,δ ; and for any d

′ > d one has

am(x,η)ψm(η)−am(x,η) → 0 in Sd
′

ρ,δ ; whence a
m(x,η)ψm(η)−a→ 0. ¤

It is straightforward to show from (2.2) that the bilinear map

OP: Sdρ,δ (Rn×Rn)×S (Rn) −→ S (Rn) (2.4)

is continuous. Hereby S (Rn) has a Fréchet space structure with seminorms

‖ψ |S ,N‖ = sup{|〈x〉NDβ ψ(x)| | x ∈ Rn, |β | ≤ N }; (2.5)

whilst Sd1,1(R
n×Rn) is a Fréchet space with the least Cα ,β in (2.1) as seminorms.

For a in S∞
1,1 :=

⋃
d S
d
1,1 the map (2.4) induces a continuous operator a(x,D) : S (Rn) →

S (Rn), that cannot in general be extended to a continuous map S ′(Rn) → D ′(Rn); this is
well known cf Section 3 below.
The next lemma extends [Hör85, Lem. 8.1.1] from u ∈ E ′(Rn) to general u ∈ S ′(Rn). The
extension is irrelevant for the definition of wavefront sets WF(u), but useful for calculations. It
is hardly a surprising result, but without an adequate reference a proof is given here. Recall that
V ⊂ Rn is a cone if R+V ⊂V . Throughout R± = { t ∈ R | ±t > 0}.
First the singular cone Σ(u) is defined as the complement in Rn \{0} of those ξ 6= 0 contained

in an open cone Γ ⊂ Rn \{0} fulfilling that
∧
u is in Lloc1 over Γ and

CN := sup
Γ
〈η〉N |

∧
u(η)| < ∞, N > 0. (2.6)

Then Σ(u) = /0 when u ∈ S (Rn), and only then (the unit sphere Sn−1 is compact).

Lemma 2.2. Whenever u ∈ S ′(Rn), then Σ(ϕu) ⊂ Σ(u) for all ϕ ∈C∞
0 (Rn), and

WF(u) ⊂ singsuppu×Σ(u). (2.7)

Proof. It is well known that S ∗S ′ ⊂ OM , so ϕ̂u(ξ ) = (2π)−n〈
∧
u,

∧
ϕ(ξ −·)〉 is C∞ .

When Γ is a cone disjoint from Σ(u), it suffices to show that supΓ1
〈η〉N |ϕ̂u(η)| < ∞ on every

closed cone Γ1 ⊂ Γ∪{0} with supremum independent of Γ1 . When ξ 6= 0 is fixed in Γ1 , then
ξ
|ξ |

∈ Γ1∩Sn−1 and this set has distance d > 0 to Rn \Γ, so for 0< θ < 1 one has η ∈ Γ in the

cone Vθ = {η 6= 0 | |ξ −η | < θd|ξ |}.

Supposing
∧
u = 0 in B(0, 14), one can take χ0+ χ1 = 1 on Sn−1 such that χ0 ∈ C

∞(Sn−1),

χ0(ζ ) = 1 for |ζ − ξ
|ξ |
| < d

3 and χ0(ζ ) = 0 for |ζ − ξ
|ξ |
| ≥ d

2 . Then η 6= 0 gives

∧
ϕ(ξ −η) = ϕ0(η)+ϕ1(η), for ϕ j(η) := χ j(

η
|η |)

∧
ϕ(ξ −η), (2.8)

and both terms are in C∞(Rn \{0}) with respect to η , by stereographic projection and the chain

rule. Now suppϕ0 ⊂ V2/3 ⊂ Γ and
∧
u ∈ Lloc1 (Γ) with rapid decay in Γ so that one can estimate
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〈
∧
u, ϕ0 〉 by means of an integral,

〈ξ 〉N |〈
∧
u, ϕ0 〉| ≤ 2

N

∫

Γ
〈ξ −η〉N |χ0(

η
|η |)||

∧
ϕ(ξ −η)|〈η〉N |

∧
u(η)|dη

≤ 2NCN+n+1‖
∧
ϕ〈·〉N‖∞‖χ0‖∞

∫
〈η〉−n−1 dη < ∞.

(2.9)

In Rn \V1/3 one has |ξ | ≤
3
d
|ξ −η | and |η | ≤ (1+ 3

d
)|ξ −η |, so using the seminorms in (2.5),

〈ξ 〉N |〈
∧
u, ϕ1 〉| ≤ c sup

η /∈V1/3,|α |≤M

〈ξ 〉N〈η〉M|Dα
η (χ1(

η
|η |)

∧
ϕ(ξ −η))|

≤ c(1+ 3
d
)N+M( ∑

|α |≤M

‖Dα χ1‖∞)‖
∧
ϕ |S ,N+M‖ < ∞.

(2.10)

Finally one can take χ̃ ∈ C∞
0 (Rn) such that χ̃ = 1 for |η | ≤ 1

4 with support in B(0,
1
2), then

〈ξ 〉N |〈
∧
u, χ̃ 〉| ≤ c‖ χ̃ |S ,N+M‖‖

∧
ϕ |S ,N+M‖ follows as in (2.10).

All bounds are uniform in ξ and in Γ1 , hence supΓ〈·〉
N |ϕ̂u| < ∞. This proves that Σ(ϕu) ⊂

Σ(u), so (2.7) holds as WF(u) = {(x,ξ ) | ξ ∈
⋂

ϕ(x)6=0, ϕ∈C∞
0

Σ(ϕu)}. ¤

Remark 2.3. In Lemma 2.2 equality obviously holds in (2.7) if the singular cone is a ray, ie if
Σ(u) = R+ζ for some ζ ∈ Rn . In such casesWF(u) can be easily determined.

3. SPECIAL PROPERTIES OF TYPE 1,1-OPERATORS

Many of the pathological properties of type 1,1-operators can be obtained from simple exam-
ples of the form

aθ (x,η) =
∞

∑
j=1

2 jde− i2
jx·θ χ(2− jη), (3.1)

whereby χ ∈C∞
0 (Rn) with suppχ ⊂ {η | 34 ≤ |η | ≤ 5

4 }; and θ ∈ Rn is fixed. Clearly aθ is in

Sd1,1 since the terms are disjoint.

Such symbols were used by Ching [Chi72] and Bourdaud [Bou88] for d = 0, |θ | = 1 to show
L2-unboundedness. Refining their counter-examples, Hörmander linked continuity from H

s with
s≥−r, r ∈ N0 , to the property that θ is a zero of χ of order r.
This is generalised to θ ∈ Rn here because (3.1) with |θ | 6= 1 enters the proof that type 1,1-
operators do not always preserve wavefront sets. And by consideration of arbitrary orders d ∈ R
the counter-examples get interesting additional properties; cf Remark 3.5 ff.

From the definition of aθ (x,η) in (3.1) it is clear that
∧
u ∈C∞

0 (Rn) gives

aθ (x,D)u=
∞

∑
j=1

(2π)−n
∫
eix·η2 jdχ(2− jη +θ)

∧
u(η +2 jθ)dη . (3.2)

Then the adjoint bθ (x,D) : S ′(Rn) → S ′(Rn) of aθ (x,D) fulfils, for all v ∈ S (Rn),

〈u, bθ (x,D)v〉 = 〈aθ (x,D)u, v〉 = (2π)−n
∫

∧
u(ξ )(

∞

∑
j=1

2 jd χ̄(2− jξ )
∧
v(ξ −2 jθ)) dξ , (3.3)
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so Fbθ (x,D)v(ξ ) = ∑∞
j=1 2

jd χ̄(2− jξ )
∧
v(ξ −2 jθ). This gives a convenient way to calculate the

Hs-norm of bθ (x,D)v, for when this is finite the disjoint supports of the χ(2− j·) imply

(2π)n‖bθ (x,D)v‖2Hs =
∞

∑
j=1

∫

2 j−1<|ξ |<2 j+1
(1+ |ξ |2)s4 jd|χ(2− jξ )

∧
v(ξ −2 jθ)|2 dξ

=
∫ (

∑
1
2<|2− jξ+θ |<2

(1+ |ξ +2 jθ |2)s4 jd|χ(2− jξ +θ)|2
)
|
∧
v(ξ )|2 dξ .

(3.4)

Therefore the action of bθ (x,D) ‘piles up’ at ξ = 0, say for s > 0 = d , |θ | = 1; ie the adjoint
bθ (x,D) is not even of type 1,1 (cf [Bou88]). Unless of course χ(θ) = 0.
This leads to the next result, which for d = 0, |θ | = 1 gives back [Hör88, Prop. 3.5]. The
identity (3.4) is taken from the proof given there, but (3.4) is used consistently here.

Proposition 3.1. When aθ (x,η) is given by (3.1) for d ∈ R, θ 6= 0, then aθ (x,D) extends by
continuity to a bounded operator Hs+d(Rn) → Hs(Rn) for all

s> −r, r := inf{|α| | Dα χ(θ) 6= 0}. (3.5)

Conversely, for |θ | ∈ [34 ,
5
4 ] existence of a continuous linear extension H

s+d(Rn) → D ′(Rn) im-
plies (3.5).

Proof. For sufficiency of (3.5) it is enough to prove the adjoint bθ (x,D) continuous

bθ (x,D) : Ht(Rn) → Ht−d(Rn) for t < r. (3.6)

This is obtained from (3.4) with s= t−d , where the inequalities 12 < |2− jξ +θ | < 2 yield that

(1+4 jd|2− jξ +θ |2)t−d = O(4 j(t−d)) for j→ ∞. Moreover |χ(θ +η)| ≤ c|η |r , so

4 jd(1+ |ξ +2 jθ |2)t−d|χ(2− jξ +θ)|2 ≤ c|ξ |2r4 j(t−r). (3.7)

Since t− r < 0 the geometric series can be estimated by the first term, and using that |2− jξ |−

|θ | ≤ 2 implies 2 j+1≥ |ξ |+1
2+|θ | , and hence 2

j ≥ 〈ξ 〉
4+2|θ | , this gives

‖bθ (x,D)v‖2
Ht−d

≤
c

1−4t−r

∫
|ξ |2r

( 〈ξ 〉

4+2|θ |

)2(t−r)
|
∧
v(ξ )|2 dξ ≤ c‖v‖2Ht . (3.8)

Necessity of (3.5) for 34 ≤ |θ | ≤ 5
4 follows if aθ (x,D) cannot be continuous H−r+d → D ′ .

So the adjoint is assumed continuous bθ (x,D) : C∞
0 (Rn) → Hr−d(Rn). Inserting in (3.4) that

χ(θ +η) = Pr(η)+O(|η |r+1) for a homogeneous polynomial Pr 6≡ 0 of degree r,

‖bθ (x,D)v‖2
Hr−d

= c
∫

( ∑
1
2<|2− jξ+θ |<2

(2− j+ |2− jξ +θ)|2)r−d|Pr(ξ )+O(2− j)|2)|
∧
v(ξ )|2 dξ .

(3.9)
For each ξ the sum runs over all j ≥ J for a certain J ≥ 0, since 12 < |θ | < 2. By increasing

J if necessary, |Pr(η) + O(2− j)| ≥ 1
2 |Pr(η)|. In addition it holds for all j ≥ 0 that (2− j +

|2− jξ + θ)|2)r−d ≥ min(5r−d,4d−r). Therefore the series above is estimated from below by

∑ j≥J
1
4 |Pr(ξ )|2 = ∞ for ξ ∈ supp

∧
v. This contradicts that bθ (x,D)(C∞

0 ) ⊂ Hr−d . ¤
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It is with good reason that necessity of (3.5) is obtained only for 34 ≤ |θ | ≤ 5
4 . For if θ /∈

suppχ , (3.5) would hold with r = ∞ and aθ (x,D) be continuous from Hs for every s ∈ R by the

sufficiency (ie no necessary condition can be imposed if |θ | /∈ [34 ,
5
4 ]).

3.1. Unclosed graphs. As an addendum to Proposition 3.1, it is a strengthening fact that Ching’s
operator aθ (x,D) can be taken unclosable in S ′(Rn). Ie its graph G, as a subspace of S ′(Rn)×
S ′(Rn), can have a closure G that is not a graph, for as shown in Lemma 3.2 below G will in
some cases contain a pair (0,v) for some v 6= 0, v ∈ S (Rn).
This is important since it shows that type 1,1-operators cannot just be defined by closing their
graphs; nor can one hope to give a definition by other means, such as (1.7), and reach a closed
operator in general.

Lemma 3.2. Let aθ (x,η) be given as in (3.1) for d ∈ R and with |θ | = 1 and χ = 1 on the ball
B(θ , 110). Then aθ (x,D) is unclosable since there exist v, vN ∈ S (Rn)\{0} such that

lim
N→∞
vN = 0 in Hd(Rn), lim

N→∞
aθ (x,D)vN = v in S (Rn). (3.10)

Proof. Take v ∈ S (Rn)\{0} with supp
∧
v⊂ {|ξ | ≤ 1

20 } and let

∧
vN(ξ ) = 1

logN

N2

∑
j=N

2− jd

j

∧
v(ξ −2 jθ) = F

(
v(x)

N2

∑
j=N

2− jdei2
jx·θ

j logN

)
. (3.11)

Since the supp
∧
v(ξ −2 jθ) are disjoint, and c12

j ≤ 〈ξ 〉 ≤ c22
j hold on each support,

‖vN |H
d‖ =

N2

∑
j=N

1
(2π)n/2 logN

(
∫

Rn

〈ξ 〉2d

j222 jd
|
∧
v(ξ −2 jθ)|2 dξ )1/2 ≤ c‖v‖2(

∞

∑
N

j−2)1/2ց 0. (3.12)

Because vN is defined by a finite sum, and χ(2− j·) ≡ 1 on supp
∧
v(·−2 jθ), a direct computation

gives the following limit in S (Rn),

aθ (x,D)vN(x) = 1
logN ( 1

N
+ 1
N+1 + · · ·+ 1

N2
)v(x) −−−→

N→∞
v(x). (3.13)

Indeed, 1≤ (N−1+ · · ·+N−2)/ logN ≤ log( N
2

N−1)/logNց 1. ¤

The sequence vN also tends to 0 in the more general Besov and Lizorkin–Triebel spaces B
d
p,q

and Fdp,q for every p ∈ [1,∞] and q> 1; cf [Joh05].

3.2. Violation of the microlocal property. In the proof of Lemma 3.2 the role of the expo-
nential functions in aθ (x,η) was clearly to move all high frequencies in the spectrum of vN to
a neighbourhood of the origin. So it is perhaps not surprising that another variant of Ching’s
example will produce frequencies η that are moved to, say −η .
This means that type 1,1-operators need not have the microlocal property; ie the inclusion
WF(a(x,D)u) ⊂WF(u) among wavefront sets is violated for certain a ∈ S∞

1,1 .

This is explicated here, following C. Parenti and L. Rodino [PR78] who treated d = 0 and
n= 1. Their suggested programme is carried out below with a coverage of all d ∈ R, n ∈ N and
arbitrary directions of θ . In addition the wavefront sets are explicitly determined here; and due
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to the uniformly estimated symbols and the fact v in (3.14) below has compact spectrum, the
present proofs are also rather cleaner.
With notation as in the proof of Lemma 3.2, again with |θ | = 1, one can introduce wθ (x) =

w(θ ,d;x) = ∑∞
j=1 2

− jdei2
jθ ·xv(x) for v ∈ S (Rn) with supp

∧
v⊂ B(0,1/20), so that

∧
wθ (η) =

∞

∑
j=1

2− jd
∧
v(η −2 jθ). (3.14)

As shown below, this distribution has the cone Rn× (R+θ) as its wavefront set. The counter-
example arises by considering wθ together with the symbol a2θ ∈ Sd1,1(R

n×Rn) defined by (3.1)
for a χ fulfilling

χ(η) = 1 for 9
10 ≤ |η | ≤ 11

10 . (3.15)

As χ vanishes around 2θ , there are by Proposition 3.1 continuous extensions

a2θ (x,D) : Hs+d(Rn) → Hs(Rn) for all s ∈ R. (3.16)

Moreover, it is easy to see that in this case every (ξ ,η) in supp
∧
a2θ lies in the cone |η | ≤ 2|ξ +η |

so that a fulfils (1.19) for C = 2. So neither a large domain, like
⋃
Hs , nor the twisted diagonal

condition can ensure the microlocal property of a type 1,1-operator:

Proposition 3.3. The distributions w(θ ,d;x) are in Hs(Rn) precisely for s < d, and when a2θ
is chosen as in (3.15) with |θ | = 1, then a2θ (x,D)w(θ ,d;x) = w(−θ ,0;x). Moreover,

WF(wθ ) = Rn× (R+θ), (3.17)

WF(a2θ (x,D)w(θ ,d;x)) = Rn× (R+(−θ)), (3.18)

so the wavefront sets of wθ and a2θ (x,D)wθ are disjoint.

Proof. Estimates analogous to (3.12) show that the series for
∧
wθ converges in L2(〈η〉2sdη) if

and only if s< d ; hence wθ is well defined in S ′ and belongs to Hs for s< d . Since the series
for wθ converges in H

s for s< d , the continuity (3.16) and (3.15) imply

a2θ (x,D)w(θ ,d;x) =
∞

∑
j=1

(2π)−n
∫
eix·(η−2 j2θ)∧v(η −2 jθ)dη = w(−θ ,0;x). (3.19)

Therefore WF(a2θ (x,D)wθ )
⋂
WF(wθ ) = /0 follows as soon as (3.17) has been proved.

Clearly supp
∧
wθ intersects each ray R+ζ only in a compact set, except for ζ = θ in which

case |
∧
wθ (η)| ≤ 2|d|‖

∧
v‖∞〈η〉−d is an exact decay rate as 2 j−1 ≤ 〈η〉 ≤ 2 j+1 on supp

∧
v(η −2 jθ),

so that Σ(wθ ) = R+θ in the notation of Lemma 2.2. This almost proves (3.17), but a full proof
is a little lengthy, because of the overlapping supports in

ϕ̂wθ = ∑2− jdϕ̂v(η −2 jθ), ϕ ∈C∞
0 (Rn). (3.20)

(This important technicality seems to be overlooked in the sketchy arguments of G. Garello
[Gar94], who also dealt with extensions of the results of [PR78].)
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That singsuppwθ = Rn follows if ϕ ∈C∞
0 (Rn)\{0} implies ϕwθ /∈C∞

0 (Rn). The last property
is invariant under multiplication by a character, so it can be arranged that |ϕ̂v| attains its max-
imum at 0. Despite the overlapping supports, ϕ̂wθ can then be seen to decay as 〈η〉−d along
R+θ , but not rapidly because ϕ̂v 6≡ 0.
To carry this out, one can pick r ∈ ]0, 14 [ so that

|η | < r =⇒ |ϕ̂v(η)| > 1
2‖ϕ̂v‖∞. (3.21)

Since every term in ϕ̂wθ is in S (Rn) it is only necessary to estimate those with indices j > J ,
for some J . (The estimates make sense since ϕ̂wθ is a function, in L2(〈η〉2sdη).) Using that
cN := sup |η |N |ϕ̂v(η)| < ∞, and r < 1/4, one finds with a fixed N > |d| that for η ∈ B(2kθ ,r),
k > J ,

2kd ∑
J< j<k

2− jd|ϕ̂v(η −2 jθ)| ≤ ∑
J< j<k

2(k− j)d
cN

2kN
(1−

2 j

2k
−
r

2k
)−N ≤

cN4
N

2JN(1−2d−N)
. (3.22)

Similarly ∑ j>k 2
(k− j)d|ϕ̂v(η −2 jθ)| ≤ cN4

N

2JN(1−2−d−N)
results by factorising 2 j out of (. . .)−N .

It is clear one can take J so large that the right-hand sides are less than 15‖ϕ̂v‖∞ . Then (3.21)

and the fact that 2k−1 ≤ 〈η〉 ≤ 2k+1 on B(2kθ ,r) give

| ∑
j>J

2− jdϕ̂v(η −2 jθ)| ≥ (12 −
2
5)‖ϕ̂v‖∞2

|d|〈η〉−d for η ∈ B(2kθ ,r). (3.23)

This estimate is uniform in k > J ; hence singsuppwθ = Rn . So by Lemma 2.2 and Remark 2.3,
WF(u) = singsuppwθ ×Σ(wθ ) = Rn× (R+θ), ie (3.17) is obtained. ¤

Remark 3.4. It is clear from (3.19) that a2θ ′(x,η)w(θ ,d;x) = w(θ ′′,0;x) for θ ′′ = θ + 2θ ′ ,
|θ ′|= 1= |θ |. But θ ′′ can point in any direction in Rn , so type 1,1-operators can make arbitrary
directional changes in wavefront sets (as noted in [PR78]).

Remark 3.5. There is an amusing reason why the counter-example wθ in Proposition 3.3 is
singular on all of Rn , ie why singsuppwθ = Rn . In fact wθ (x) = v(x) f (x · θ) where f (t) =

∑∞
j=1 2

− jdei2
jt , and this is for 0 < d ≤ 1 a well-known variant of Weierstrass’ nowhere differ-

entiable function (a fact that could have substantiated the argument for formula (19) in [PR78]).
That the theory of type 1,1-operators is linked to this classical construction seems to be previ-
ously unobserved.

Remark 3.6. To elucidate Remark 3.5, f (t) = ∑∞
j=1 2

− jdei2
jt is investigated here. Clearly f ∈

S ′(R) for all d ∈ R, as the Fourier transformed series 2π ∑∞
j=1 2

− jdδ2 j converges there.
By uniform convergence f is for d > 0 a continuous 2π -periodic and bounded function.
Nowhere-differentiability for 0 < d ≤ 1 is an easy (maybe not widely known) exercise in dis-

tribution theory: suppF f is lacunary, so any choice of χ ∈ S (R) such that
∧
χ(1) = 1 and

supp
∧
χ ⊂ ]12 ,2[ will lead to supp

∧
χ(2−k)

⋂
suppδ2 j 6= /0 only for j = k, which entails

2−kdei2
kt = 2kχ(2k·)∗ f (t) =

∫

R
χ(z)( f (t−2−kz)− f (t))dz; (3.24)
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so if f were differentiable at t0 , G(h) := 1
h
( f (t0+ h)− f (t0)) would be in C(R)∩L∞(R), and

the contradiction d > 1 would follow since by majorised convergence

2(1−d)kei2
kt0 = −

∫
G(−2−kz)zχ(z)dz−−−→

k→∞
f ′(t0) · (−D)

∧
χ(0) = 0. (3.25)

Moreover, if m < d ≤ m+ 1 for m ∈ N it follows by termwise differentiation that f ∈ Cm(R),

but with f (m) nowhere differentiable; so singsupp f = R also for all d > 0.
For d ≤ 0 one has f /∈ Lloc1 , for f is invariant in S ′ under translation by 2π , so if f ∈ Lloc1 is
assumed, 〈 f , ϕ 〉=

∫
fϕ dt holds for ϕ inC∞

0 (R) as well as inS , since |
∫
fϕ dt| ≤ csupt∈R(1+

|t|2)|ϕ(t)| follows from the fact that (1+ r2)−1 f (r) is in L1:
∫

R

| f (r)|

1+ r2
dr = ∑

p∈Z

∫ 2(p+1)π

2pπ

| f (r)|

1+ r2
dr ≤

∫ 2π

0
| f |dr

∞

∑
p=0

2
1+(2pπ)2

< ∞. (3.26)

Therefore the convolution in (3.24) is given by the integral also in this case. By taking t outside
a certain Gδ -set of measure 0, f is continuous at t , whence

2−kd = |
∫
2kχ(2kr)( f (t− r)− f (t))dr| −−−→

k→∞
0. (3.27)

In fact, for ε > 0 the part with |r|< δ is< ε for some δ > 0, but sup|r|≥δ (1+|t−r|2)2k|χ(2kr)|=

O(2−k), so since L1(R) by (3.26) contains r 7→ ( f (t−r)− f (t))/(1+ |t−r|2) the limit 0 results.
Thence the contradiction d > 0.
To complete the picture, Weierstrass’ original function W (t) = ∑∞

j=0 a
− j cos(b jt), where b ≥

a > 1, is nowhere differentiable by the same argument. One only has to take suppF χ ⊂ ]1
b
,b[ ,

F χ(1) = 1, for in F cos(b j·) = 2π
2 (δb j + δ−b j) the last term is removed by

∧
χ(b− j·), so that

χ(b− jD) in effect yields a second microlocalisation of W . As in (3.24)–(3.25) it follows that

(b
a
)keib

kt0 → 0 for k→ ∞, contradicting that b ≥ a. A further study of nowhere differentiable
functions by means of microlocalisation can be found in [Joh08].

Remark 3.7. As a precise account of the regularity, f ∈ Bd∞,∞(R); for 0< d < 1 this Besov space

consists of Hölder continuous functions of order d . Indeed, the norm of f in Bd∞,∞ is from the
left part of (3.24) seen to equal 1, when χ is taken as Φ1 in a suitable Littlewood–Paley partition
of unity 1 = ∑∞

j=0Φ j . Moreover, f ∈ F
d
p,∞;loc(R) when d ∈ R, 0 < p < ∞, for the definition in

[Tri83] of Fsp,q gives, when v ∈ S (R) with supp
∧
v⊂ B(0, 120),

‖v f‖Fdp,∞ = (
∫

(sup
j

2 jd|Φ j(D)(v f )|)p dt)1/p =
∥∥sup
j

|v(t)ei2
jt |

∥∥
p
= ‖v‖p. (3.28)

These are identities, so the Fdp,∞-regularity is sharp. That ϕ f ∈ Fsp,∞(R) for ϕ ∈C∞
0 (R) results

from ϕ f = ϕ
v
v f ∈ Fdp,∞ when ϕ ∈C∞

0 (R) has support in R\{v= 0}; one can reduce to this with
a partition of unity on ϕ and translation of v in each term.

Remark 3.8. To substantiate Remark 3.5, note that wθ (x) = v(x) f (x ·θ) is almost nowhere dif-
ferentiable for 0 < d ≤ 1, since v has isolated zeroes. If d ≤ 0 then w(θ ,d; ·) /∈ Lloc1 (Rn) for
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else one can derive the contradiction 2−kdv(x) = 2knχ(2k·)∗ [v f (〈 ·, θ 〉)] → 0 by modifying the
corresponding part of Remark 3.6. As in Remark 3.7 it follows that

w(θ ,d;x) ∈ Fdp,∞;loc(R
n) for all p ∈ ]0,∞[ , d ∈ R. (3.29)

If w̃(θ ,d;x) is defined as w(θ ,d;x) except with a further factor 1/ j in each summand, similar
arguments yield that w̃ ∈ Hs for s ≤ d as well as the other properties in Proposition 3.3, with
a nowhere differentiable series for 0 < d < 1. Moreover, w̃(θ ,d; ·) is in Fdp,q;loc(R

n) as soon

as q > 1 for every p ∈ ]0,∞[ . Hence the counter-examples with unclosable graphs and violated
microlocal properties are both related to Lizorkin–Triebel spaces Fdp,q with arbitrary q > 1; cf
(1.20) and Section 3.1.

4. PRELIMINARY EXTENSIONS

Throughout Fy→η etc. will denote partial Fourier transformations, that are all homeomor-

phisms on S ′(R2n). In general the Fourier transformation in all variables is written Fu or
∧
u,

except that for a symbol a ∈ S ′(R2n),

∧
a(ξ ,η) := Fx→ξa(ξ ,η). (4.1)

Transformation of coordinates via (x,y) 7→ (x,x− y), that has matrix M =
(
I 0
I −I

)
= M−1 , is

indicated by f ◦M .
As a preparation some well-known formulae are recalled:

Proposition 4.1. Let a ∈ S∞
1,1(R

n×Rn) and u,v, f ,g ∈ S (Rn). Then

〈a(x,D)u, v〉 = 〈 e
ix·η

(2π)na(x,η), v(x)⊗
∧
u(η)〉 = 〈K, v⊗u〉. (4.2)

K(x,y) = F
−1
η→y(a)(x,x− y) = F

−1
η→y(a(x,η))◦

(
I 0
I −I

)
. (4.3)

〈Fa(x,D) f , Fg〉 = (2π)−n
∫∫

∧
a(ξ −η ,η)

∧

f (η)
∧
g(ξ )dξdη . (4.4)

Here
∫∫

. . .dξdη is valid as an integral for a∈S (R2n), but should be read as the scalar product
on S ′×S for general a ∈ S∞

1,1 .

Proof. By Fubini’s theorem, (4.2) holds for a ∈ S (R2n), when K is given as in (4.3). The
bijection a↔ K extends to a homeomorphism on S ′(R2n). So by density of S in Sd1,1 , as

subsets of Sd+11,1 hence of S ′ , the identities in (4.2) hold for all a ∈ Sd1,1 . Formula (4.4) results

from (4.2) for u= f , v= F 2g, since (F 2g)⊗
∧

f = Fξ→x(
∧
g⊗

∧

f ). ¤

The partially Fourier transformed symbol
∧
a(ξ ,η) is closely related to the distribution kernel

K(x,y) of a(x,D) as well as to the kernel K (ξ ,η) of the conjugation Fa(x,D)F−1 of a(x,D)

by the Fourier transformation on Rn . Indeed, modulo simple isomorphisms,
∧
a(ξ ,η) gives both

the frequencies contained in K(x,y) as well as K (ξ ,η):
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Proposition 4.2. When a ∈ S∞
1,1(R

n×Rn), and K, K and M are as above,

FK(ξ ,η) =
∧
a(ξ +η ,−η) =

∧
a◦Mt(ξ ,η) = (2π)nK (ξ ,−η). (4.5)

Proof. (4.3) implies that K = F−1
η→y(e

− ix·ηa(x,−η)), since F−1 commutes with reflections in
η and y. Then (4.5) follows by application of F and (4.4). ¤

The right-hand side of (4.2) is inconvenient for the definition of type 1,1-operators, as in gen-
eral both entries of 〈K, v⊗u〉 have singularities (in some cases this can be handled, cf Section 7).
However, it is a well-known fact that also in case ρ = 1 = δ the kernels only have singularities
along the diagonal.

Lemma 4.3. For every a ∈ Sd1,1(R
n×Rn) the kernel K(x,y) is C∞ for x 6= y.

Proof. For N so large that d+ |β |+ |α|−2N < −n,

|z|2NDβ
xD

α
z Fη→z(a(x,η)) = Fη→z(∆

N
η (ηαDβ

x a(x,η))) (4.6)

is a continuous function, so any derivative of K is so for x 6= y. ¤

Instead the middle of (4.2) gives a convenient way to prove that every type 1,1-operator ex-
tends to F−1E ′(Rn), ie to the space of tempered distributions with compact spectrum. This
result was first observed in [Joh05], but the following argument should be interesting for its
simplicity. When v ∈C∞

0 (Rn) and u ∈ F−1C∞
0 (Rn) then (4.2) gives

〈a(x,D)u, v〉 = 〈v(x)⊗
∧
u(η), e

ix·η

(2π)na(x,η)〉E ′×C∞. (4.7)

This suggests to introduce A : F−1E ′(Rn) →C∞(Rn) given by

Au(x) = 〈
∧
u, e

i〈x, · 〉

(2π)na(x, ·)〉. (4.8)

That Au is in C∞ is a standard fact used eg in the construction of tensor products on E ′(Rn
′
)×

E ′(Rn
′′
); cf [Hör85, Th. 5.1.1]. By definition of the tensor product of arbitrary v,

∧
u ∈ E ′(Rn),

they should act successively on the C∞-function, so

〈v⊗
∧
u, ei〈 ·, · 〉a · (2π)−n 〉 = 〈v, Au〉 =

∫

Rn
v(x)Au(x)dx. (4.9)

Taking v in C∞
0 (Rn), this and (4.7) gives Au = a(x,D)u for every u ∈ F−1C∞

0 = S ∩F−1E ′ ;
hence a(x,D) and A are compatible. Therefore a(x,D) extends to a map

a(x,D) : S (Rn)+F
−1

E
′(Rn) →C∞(Rn) (4.10)

by setting a(x,D)u = a(x,D)v+Av′ when u = v+ v′ for v ∈ S and F v′ ∈ E ′ (if 0 = v+ v′ ,
clearly v= −v′ is in F−1C∞

0 , hence gives identical images, ie a(x,D)v+Av′ = 0).

By the duality of E ′ and C∞ , the right-hand side of (4.8) should be calculated by multiplying
a(x,η) by a cut-off function χ(η) equalling 1 on a neighbourhood of suppFu. The resulting
symbol χ(η)a(x,η) is clearly in

S−∞(Rn×Rn) :=
⋂
Sdρ,δ (Rn×Rn). (4.11)
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A systematic exploitation of localisations like χ(η)a(x,η) is found in the next section.

4.1. Extension by spectral localisation. For type 1,1-operators, this section gives a first exten-
sion, based on cut-off techniques and arguments from algebra. The latter are trivial, but important
for several compatibility questions that are treated here.

Let S ′
Σ(Rn) denote the closed subspace of distributions with spectrum in a given open set

Σ ⊂ Rn , ie

S
′

Σ(Rn) =
{
u ∈ S

′(Rn)
∣∣ supp ∧

u⊂ Σ
}
. (4.12)

Clearly the intersection SΣ(Rn) := S (Rn)∩S ′
Σ(Rn) is dense in S ′

Σ(Rn).
As a basic assumption in this section, a(x,η) ∈ S∞

1,1 should have the properties of a more

‘well-behaved’ symbol class S as η runs through a given open set Σ ⊂ Rn . It would then be
natural, and necessary, to extend a(x,D) to every u ∈ S ′

Σ(Rn) by letting it act as an operator
with symbol in the class S.
To turn this idea into a definition, an arbitrary linear subspace S⊂ S ′(R2n)∩C∞(R2n) will in
the following be called a standard symbol space if, for every b ∈ S, the integral in (2.2) gives an
operator OP(b) : S → S which extends to a continuous linear map

OP(b) : S ′(Rn) → S
′(Rn). (4.13)

(Such an extension is unique, so the notation need not relate OP(b) to the choice of S. To avoid
confusion, the type 1,1 operator under extension is usually denoted a(x,D).) An example could
be S = Sdρ,δ with (ρ,δ ) 6= (1,1); whilst OP(b) could be the extension to S ′ of b(x,D) given

by the adjoint of b∗(x,D) : S (Rn) → S (Rn), that in its turn is defined from the adjoint symbol

b∗(x,ξ ) = eiDx·Dξ b̄(x,ξ ).
Using this, a(x,D) can be extended if the symbol a∈ S∞

1,1 is locally in a standard symbol space

S in an open set Σ ⊂ Rn . Specifically this means that for every closed set F ⊂ Σ there exists a
cut-off function χ ∈C∞

b (Rn), not necessarily supported by Σ, such that

χ ≡ 1 on a neighbourhood of F, χ(η)a(x,η) ∈ S. (4.14)

Instead of a(x,η)χ(η), the slightly more correct a(1⊗χ) is often preferred in the sequel.

Proposition 4.4. For each symbol a ∈ S∞
1,1(R

n×Rn) that is locally in S in an open set Σ ⊂ Rn ,

there is defined a map S ′
Σ(Rn) → S ′(Rn) by

a(x,D)u= OP(a(1⊗χ))(u), (4.15)

which has the same value for all χ ∈ C∞
b (Rn) satisfying (4.14) for F = suppFu. The map is

compatible with a(x,D) : S (Rn) → S (Rn).

Proof. Let u ∈ S ′
Σ(Rn). By (4.14) and (4.13), OP(a(1⊗ χ)) is defined on S ′ ∋ u. If χ1 is

another such function, a(x,η)(χ(η)− χ1(η)) is in the vector space S and equals 0 for η in
some open set Σ1 ⊃ suppu, so that by density of SΣ1 in S ′

Σ1
,

0= OP(a(1⊗ (χ −χ1)))u. (4.16)

Therefore (4.15) is independent of the choice of χ , so the map OP(a(1⊗ χ))u is defined; it
equals a(x,D)u for every u ∈ S ∩S ′

Σ by (2.2). ¤
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The compatibility in Proposition 4.4 gives of course a map on the algebraic subspaceS (Rn)+
S ′

Σ(Rn) ⊂ S ′(Rn); cf (4.18). But more holds:

Theorem 4.5. For every a ∈ S∞
1,1(R

n×Rn) that in an open set Σ ⊂ Rn is locally in a standard

symbol space S (cf (4.13)), the operator a(x,D) extends to a linear map

S (Rn)+S
′

Σ(Rn)
a(x,D)
−−−→ S

′(Rn) given by (4.17)

a(x,D)u= a(x,D)v+OP(a(1⊗χ))v′ (4.18)

whenever u = v+ v′ for v ∈ S (Rn), v′ ∈ S ′
Σ(Rn); hereby χ ∈ C∞

b (Rn) can be any function
fulfilling (4.14) for F = suppF v′ . The extension is uniquely determined by coinciding with
(4.13) on S ′

Σ(Rn).

Proof. For uniqueness, let ÕP(a) be any extension coinciding with (4.13) on S ′
Σ(Rn). Then

linearity gives, for any splitting u= v+ v′ and χ as in the theorem, that

ÕP(a)u= ÕP(a)v+ ÕP(a)v′ = a(x,D)v+OP(a)v′ = a(x,D)v+OP(a(1⊗χ))v′. (4.19)

To show that (4.18) actually defines the desired map, suppose u = v+ v′ = w+w′ for some
v,w ∈ S and v′,w′ ∈ S ′

Σ . Applying a(x,D) to v−w and OP(a(1⊗χ)) to w′− v′ , with χ taken
so that χ ≡ 1 on a neighbourhood of F = suppF v′ ∪ suppFw′ ⊃ suppF (w′− v′), it follows
from the compatibility in Proposition 4.4 and linearity that, for χ = χ1 = χ2 ,

a(x,D)v+OP(a(1⊗χ1))v
′ = a(x,D)w+OP(a(1⊗χ2))w

′. (4.20)

By Proposition 4.4 one can then pass to arbitrary χ1 , χ2 equalling 1 around suppF v
′ , respec-

tively suppFw′ , without changing the left and right-hand sides. This means that (4.18) gives a
map, for a(x,D)v+OP(a(1⊗ χ))v′ is independent of the splitting u = v+ v′ and of the corre-
sponding choice of χ ; thence linear dependence on u follows too. ¤

Theorem 4.5 gives a basic extension of type 1,1-operators, that could have been a definition
(justified by the given arguments). When a∈ S∞

1,1 happens to be in S too, then χ ≡ 1Rn and v= 0

yields a(x,D)u= OP(a)u, so the definition (4.18) gives back the S ′-continuous operators with
symbols in S.
Before these questions are pursued, the dependence on S and Σ is investigated.

Proposition 4.6. Let S and S̃ be standard symbol spaces, and let a ∈ S∞
1,1 be locally in S in some

open set Σ ⊂ Rn and also locally in S̃ in an open set Σ̃. Then the induced maps

a(x,D) : S +S
′

Σ → S
′, a(x,D) : S +S

′
Σ̃
→ S

′ (4.21)

are compatible when either Σ has the property that χ in (4.14) for every F can be taken with
suppχ ⊂ Σ, or Σ̃ has the analogous property.

Proof. One can reduce to the case S= S̃ by introducing the subspace S+ S̃⊂S ′(R2n): for every
b ∈ S, b̃ ∈ S̃ the definition by the usual integral shows that

OP(b+ b̃) = OP(b)+OP(b̃) on S (Rn). (4.22)
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Here OP(b+ b̃) extends to a continuous, linear map S ′(Rn) → S ′(Rn) since the right-hand
side does so. If b+ b̃= b1+ b̃1 for b1 ∈ S, b̃1 ∈ S̃, both OP(b+ b̃), OP(b1+ b̃1) extend to S ′ ,

where they coincide as they do so on S . Hence every b+ b̃ in S+ S̃ gives an unambiguously
defined operator on S ′(Rn), as required in (4.13); ie S+ S̃ is a standard space.
Let u= v+w= ṽ+ w̃ for some v, ṽ ∈ S , w ∈ S ′

Σ and w̃ ∈ S ′
Σ̃
. By the last assumption there

exists eg ϕ ∈C∞
b (Rn) such that suppϕ ⊂ Σ̃, ϕ ≡ 1 on a neighbourhood of F̃ and a(1⊗ϕ) ∈ S̃.

In particular 1−ϕ = 0 around F̃ so

u= ϕ(D)(v+w)+(1−ϕ(D))(ṽ+ w̃) = ṽ+ϕ(D)(v− ṽ)+ϕ(D)w. (4.23)

While v′ = ṽ+ϕ(D)(v− ṽ) is in S (Rn), the term ϕ(D)w is in S ′
Σ∩Σ̃

(Rn). By taking ψ = 1 in

a neighbourhood of suppFϕ(D)w⊂ Σ∩ Σ̃, it is clear that one gets

a(x,D)u= a(x,D)v′ +OP(a(1⊗ψ))ϕ(D)w (4.24)

by application of Theorem 4.5 both for S ′
Σ and S ′

Σ̃
. ¤

As a simple application for Σ = Rn , every u ∈ F−1E ′(Rn) is in S ′
Σ = S ′(Rn); and a is

locally in S−∞ since b(x,η) = a(x,η)χ(η) is in S−∞ for every χ ∈C∞
0 (Rn), in particular when

χ = 1 around suppFu. Therefore Theorem 4.5 yields a unique extension of a(x,D) to a linear
map S (Rn)+F−1E ′(Rn). (Proposition 4.6 shows that one can replace the reference to S−∞ by
eg S∞

1,0 , or let Σ depend on u, without changing the image a(x,D)u.)

This approach is more elementary than (4.7) ff, and it also gives that a(x,D) mapsF−1E ′(Rn)
into OM(Rn). Recall that every a(x,D) in OP(S−∞(Rn×Rn)) is a map S ′ → OM (cf [SR91,

Cor. 3.8]), since if u ∈ S ′ , then (1+ |x|2)−Nu ∈ H−N for some N > 0 and every commutator
[Dαa(x,D),(1+ |x|2)N ] is by inspection in OP(S−∞). These facts imply the next result.

Corollary 4.7. Every operator a(x,D) with symbol in S∞
1,1 extends uniquely to a map

a(x,D) : S (Rn)+F
−1(E ′(Rn)) → OM(Rn), (4.25)

which is given by Theorem 4.5 with S= S−∞ .

Notice that the corollary’s statement is purely algebraic, since continuity properties are not
involved in (4.25). Similarly one has another extension result.

Proposition 4.8. If a ∈ S∞
1,1 is locally in the symbol class S

d
1,0(R

n×Rn) in an open cone V ⊂ Rn

(ie tη ∈V for all t > 0 and η ∈V ), then (4.18) yields a unique extension

a(x,D) : S +S
′
V → S

′. (4.26)

If some a ∈ S∞
1,1 satisfies the hypotheses of Proposition 4.8, it follows from Proposition 4.6

that the two extensions in (4.25)–(4.26) are compatible with one another.

Example 4.9. By Corollary 4.7, the domain of every a(x,D) in OP(S∞
1,1) contains polynomials

∑|α |≤k cαx
α , as their spectra equal {0}, and eg also the C∞-functions

xαeix·z = (2π)nF−1(D
α
η δz(η)); sinx1

x1
. . . sinxn

xn
= πnF−11[−1;1]n. (4.27)
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5. DEFINITION BY VANISHING FREQUENCY MODULATION

The full extension of type 1,1-operators is given here by means of a limiting procedure.

To define a(x,D)u in general for a ∈ Sd1,1(R
n×Rn), d ∈ R, and suitable u ∈ S ′(Rn), it is

convenient for an arbitrary ψ ∈C∞
0 (Rn) with ψ ≡ 1 in a neighbourhood of the origin to introduce

the following notation, with ψm(ξ ) := ψ(2−mξ ),

um = F
−1(ψm

∧
u) = ψm(D)u, (5.1)

am(x,η) = F
−1
ξ→x

(ψm(ξ )Fx→ξa(ξ ,η)) = ψm(Dx)a(x,η). (5.2)

This is referred to as a frequency modulation of u and of a(x,η) with respect to x; the full
frequency modulation of a will be am(x,η)ψm(η), ie am(1⊗ ψm). Since a

m is in S∞
1,1 by

Lemma 2.1, the compact support of ψm gives that

am(1⊗ψm) ∈ S
−∞. (5.3)

Hence OP(am(1⊗ψm)) is defined on S ′(Rn), and since limm→∞ a
m(1⊗ψm) = a holds in Sd+11,1 ,

it should be natural to make a tentative definition of a(x,D) as

a(x,D)u= lim
m→∞
OP(am(1⊗ψm))u. (5.4)

Some basic difficulties that might appear in this connection are dealt with in the formal

Definition 5.1. The pseudo-differential operator a(x,D)u is defined as the limit in (5.4) for those
a ∈ Sd1,1(R

n×Rn) and u ∈ S ′(Rn) for which the limit

• exists in the topology of D ′(Rn) for every ψ ∈C∞
0 (Rn) equalling 1 in a neighbourhood

of the origin, and
• is independent of such ψ .

To show that a(x,D) extends the operator defined on S (Rn) by (2.2), it suffices to combine
Lemma 2.1 with (2.4). As shown below, Definition 5.1 also gives back both the usual operator
OP(a) if a is eg of type 1,0 and the extensions in Section 4.

As an elementary observation, by using the definition for a fixed a∈ S∞
1,1 and by the calculus of

limits, the operator is defined for u in a subspace ofS ′(Rn). This will be denoted by D(a(x,D)),
or D(A) if A := a(x,D), in the following.
Clearly D(A)⊃S (Rn), so A is a densely defined and linear operator fromS ′(Rn) to D ′(Rn)
(borrowing terminology from unbounded operators in Hilbert spaces). This description cannot
be improved much in general, for by Lemma 3.2, a(x,η) can be chosen so that A with D(A) =
S (Rn) is unclosable. But one does have

Proposition 5.2. For a, b in S∞
1,1(R

n×Rn) the following properties are equivalent:

(i) a(x,η) = b(x,η) for all (x,η) ∈ R2n;
(ii) a(x,D) = b(x,D) as operators from S ′(Rn) to D ′(Rn);
(iii) a(x,D)u= b(x,D)u for every u ∈ S (Rn);
(iv) the distribution kernels fulfil Ka = Kb .
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In particular the map a 7→ a(x,D) is a bijection Sd1,1 ↔ OP(S
d
1,1); and the operator a(x,D) is

completely determined by its action on the Schwartz space.

The last property is perhaps not obvious from the outset, because, in general, there is neither
density of S ⊂D(a(x,D)) nor continuity of a(x,D) to appeal to. However it follows at once, as
it is straightforward to see that (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) =⇒ (i).
The following notion is very convenient for the analysis of a(x,D):

Definition 5.3. A standard symbol space S on Rn×Rn is said to be stable under vanishing
frequency modulation if in addition to (4.13),

(i) bm(1⊗ψm)(x,η) = ψ(2−mDx)b(x,η)ψm(η), is in S for every b ∈ S, m ∈ N, and every
ψ ∈C∞

0 (Rn) equalling 1 near the origin,
(ii) for every u ∈ S ′(Rn), and ψ as above,

OP(bm(1⊗ψm))u→ OP(b)u in D
′(Rn) for m→ ∞. (5.5)

For short S and the operator class OP(S) are then said to be stable.

Note that (i) requires the operator class OP(S) to be invariant under full frequency modulation;
whereas (ii) requires OP(S) to be invariant under vanishing frequency modulation in the sense
that the limit gives back the original operator OP(b).
Although Sd1,1 is not a standard space, OP(S

∞
1,1) is also said to be stable, as (5.5) holds by

definition for every u in D(b(x,D)), b ∈ S∞
1,1 . Other stable spaces exist as well:

Proposition 5.4. Every Sdρ,δ (Rn×Rn) with ρ > δ for ρ,δ ∈ [0,1] is a stable symbol space.

Moreover, (5.5) holds in the S ′-topology.

Proof. By Lemma 2.1 condition (i) is satisfied, and limbm(1⊗ψm) = b in Sd
′

ρ,δ , d
′ > d+δ . As

OP(b) is the adjoint of b∗(x,D) = OP(exp(iDx ·Dη)b), each ϕ ∈ S (Rn) gives

(OP(bm(1⊗ψm))u−OP(b)u |ϕ ) = (u | OP(eiDx·Dη (bm(1⊗ψm)−b))ϕ ) −−−→
m→∞

0, (5.6)

since passage to adjoint symbols b 7→ b∗ is continuous Sdρ,δ → Sdρ,δ for ρ > δ . ¤

Proposition 5.4 makes the definition of a(x,D) by vanishing frequency modulation look nat-
ural. To analyse the consistency questions in general, it is recalled that OP(a) is defined on
S (Rn) by the integral (2.2) if a is in a standard space S or in S= S∞

1,1 . And for a standard space

S, OP(a) extends uniquely to a continuous linear map on S ′(Rn).

Let now a 7→ ÕP(a) be an arbitrary assignment such that ÕP(a), for each a ∈ S∞
1,1 , is a linear

operator from S ′(Rn) to D ′(Rn). Then the maps OP and ÕP are compatible on a standard

symbol space S if D(ÕP(a)) = S ′(Rn) for every a ∈ S∩S∞
1,1 and

ÕP(a)u= OP(a)u for all u ∈ S
′(Rn). (5.7)

Moreover, ÕP and OP are called strongly compatible on S if, whenever a is in S∞
1,1 and belongs

to S locally in some open set Σ ⊂ Rn , it will hold that S ′
Σ(Rn) ⊂ D(ÕP(a)) and

ÕP(a)u= OP(a(1⊗χ))u for all u ∈ S
′

Σ(Rn). (5.8)
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Hereby χ ∈C∞
b (Rn) should fulfil (4.14) for F = supp

∧
u and a(1⊗ χ) ∈ S. (The right-hand side

of (5.8) makes sense because of χ , but it does not depend on χ since S is standard.) Taking
Σ = Rn and χ ≡ 1, strong compatibility clearly implies compatibility.
As an example Corollary 4.7 shows that, if the preliminary extension of Section 4.1 is written

ÕP, then ÕP(a) is strongly compatible with OP on S−∞ . More generally Theorem 4.5 gives

strong compatiblity of ÕP with OP on every standard symbol class S.
The following theorem shows that a(x,D) given by Definition 5.1 contains every extension
provided by Theorem 4.5 when S is stable.

Theorem 5.5. Let a ∈ S∞
1,1 and Σ ⊂ Rn be an open set such that a locally in Σ belongs to a

stable symbol class S (such as Sdρ,δ for ρ > δ ). Then every u ∈S (Rn)+S ′
Σ(Rn) belongs to the

domain D(a(x,D)) given by Definition 5.1. Moreover,

a(x,D)u= OP(a)v+OP(a(1⊗χ))v′ (5.9)

whenever u is split as u= v+v′ for v ∈ S (Rn), v′ ∈ S ′
Σ(Rn), and χ ∈C∞

b (Rn) fulfils (4.14) for
F = suppF v′ .

Proof. Let u ∈ S ′
Σ . Since a is locally in S in Σ one can take χ as in the theorem, so that

a(1⊗ χ) ∈ S. Using that S in particular is a standard space, approximation of
∧
u from C∞

0 gives
OP(am(x,η)(1−χ(η))ψm(η))u= 0. Now (5.5) applies, since S is stable; and multiplication by
χ(η) and ψm(Dx) commute in S ′(Rn×Rn), so

OP(a(1⊗χ))u= lim
m
OP(ψm(η)χ(η)ψm(Dx)a(x,η))u= lim

m
OP(am(1⊗ψm))u= a(x,D)u.

(5.10)
This shows that S ′

Σ(Rn) ⊂ D(a(x,D)). And for u ∈ S (Rn) it is seen already from (2.4) that
am(x,D)um→ a(x,D)u in S (Rn) for m→ ∞.
Since a(x,D) is linear by Definition 5.1, it follows that every u in S + S ′

Σ belongs to
D(a(x,D)) and that (5.9) holds. In particular the last statement that (5.9) is independent of
v, v′ and χ is implied by this (and by Theorem 4.5). ¤

Remark 5.6. It is noteworthy that Theorem 5.5 resolves a dilemma resulting from application of
a(x,D) ∈ OP(S∞

1,1) to u ∈ F−1(E ′(Rn)): then a(x,D)u can be calculated by using both Corol-

lary 4.7 and Definition 5.1. But by taking S = S−∞ , Theorem 5.5 entails that the two methods
give the same result.

It follows from Theorem 5.5 that the assumptions on Σ and Σ̃ are unnecessary in Proposi-
tion 4.6 in case S is stable (this emphasises the advantage of using vanishing frequency modula-
tion). As a reformulation of Theorem 5.5 one has

Corollary 5.7. The operator a(x,D) given for a ∈ S∞
1,1(R

n×Rn) by Definition 5.1 is strongly

compatible with OP on every stable symbol space S. In particular a(x,D)u= OP(a)u holds for
every u ∈ S ′(Rn) when a ∈ S∞

ρ,δ (Rn×Rn) for some δ < ρ .

As a special case a(x,D) gives back OP(a) on S−∞ . This may also be shown by verifying
(5.7) directly, but one can only simplify (5.10) slightly by taking χ ≡ 1 on Rn .
The various consistency results obtained in this section can be summed up thus:
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Corollary 5.8. Let a(x,D) be given by Definition 5.1 for a ∈ S∞
1,1 . Then a(x,D)u equals the

integral in (2.2) for u ∈S (Rn) or the extension in Corollary 4.7 for every u ∈F−1E ′(Rn); and
it coincides with OP(a) on S ′(Rn) if a is in Sdρ,δ (Rn×Rn), ρ > δ .

To characterise the operators provided by Definition 5.1, it is convenient to ignore that the
compatibility of a(x,D) is strong (cf Corollary 5.7). Indeed, the map a 7→ a(x,D) is simply the
largest compatible extension stable under vanishing frequency modulation:

Theorem 5.9. The operator a(x,D) given by Definition 5.1 is one among the operator assign-

ments a 7→ ÕP(a), a ∈ S∞
1,1(R

n×Rn) with the properties that

(i) ÕP(·) is compatible with OP on S−∞ (cf (5.7));

(ii) each operator ÕP(b) is stable under vanishing frequency modulation, ie ÕP(b)u =

limm→∞ ÕP(b
m(1⊗ψm))u for every u ∈ D(ÕP(b)) and b ∈ S∞

1,1 .

And moreover, whenever ÕP is such a map, then ÕP(a) ⊂ a(x,D) for every a ∈ S∞
1,1 .

Note that (ii) makes sense because ÕP(bm(1⊗ψm)) in view of (i) is defined on all of S
′ .

Proof. Let a 7→ ÕP(a) be any map fulfilling (i) and (ii); such maps exist since a 7→ a(x,D) was

seen above to have these properties. If u ∈ D(ÕP(a)) it follows from (i) that

OP(am(1⊗ψm))u= ÕP(am(1⊗ψm))u. (5.11)

Here the right-hand side converges to ÕP(a)u by (ii); since ψ is arbitrary this means ÕP(a)u=

a(x,D)u. Hence ÕP(a) ⊂ a(x,D). ¤

This section is concluded with a few remarks on the practical aspects of Definition 5.1. From
the integral in (2.2), one would at once infer the following alter egos for the full frequency
modulation of a(x,D): if χ ∈C∞

0 (Rn) fulfils χ = 1 around suppψm , then

am(x,D)um = OP(am(x,η)χ(η))F−1(ψm
∧
u) = OP(am(x,η)ψm(η))u. (5.12)

However, these identities hold also for more general cut-off functions χ .

Lemma 5.10. For every a ∈ S∞
1,1 , u ∈ S ′ and every ψ ∈ C∞

0 with ψ = 1 near the origin, the
formula (5.12) holds for all m and all χ ∈ C∞

b for which χ = 1 in a neighbourhood of F =

supp(ψm
∧
u) and a(1⊗χ) ∈ S−∞ .

Proof. The last part of (5.12) follows from (2.2) if u is a Schwartz function, hence for all u ∈
S ′(Rn) since both am(1⊗ψm) and a

m(1⊗χ) belong to S−∞ . Since um ∈F−1E ′ and am(x,η)∈
S∞
1,1 , Corollary 5.8 shows that a

m(x,D)(um) can be calculated by the extension in Section 4.1;
then Theorem 4.5 gives the left-hand side of (5.12). ¤

In view of (5.12), one could alternatively have defined a(x,D)u as a limit of am(x,D)um . This
would be an advantage in as much as the expression am(x,D)um is a natural point of departure
for Littlewood–Paley analysis of a(x,D)u (as explained later); it would also make a and u enter
in a more symmetric fashion. But as a drawback the resulting definition of a(x,D) would then
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have two steps, the first one being an extension to F−1E ′ as in Section 4.1. In comparison the
limit in (5.4) only refers to S−∞ , cf (5.3), which made it possible to state Definition 5.1 directly;
cf (1.7).
Formula (5.12) is so self-suggesting that it is convenient to write am(x,D)um without further
explanantion, instead of the slightly tedious OP(am(1⊗ψm))u, that enters Definition 5.1. (This
is permitted as the two expressions are equal for every choice of the auxiliary function ψ , cf
Lemma 5.10).
Since Definition 5.1 is based on a limit of am(x,D)um , it is useful to relate the distribution
kernel Km(x,y) of u 7→ a

m(x,D)um to the kernel K(x,y) of a(x,D).
The symbol of am(x,D)um is am(1⊗ψm) ∈ S

−∞ , cf (5.12), so (4.3) and the definition of am

give, for all u, v ∈ S (Rn),

〈am(x,D)um, v〉 = 〈F−1
η→y(a

m(1⊗ψm))(x,x− y), v(x)⊗u(y)〉

= 〈F−1(ψm(ξ )ψm(η)Fx→ξa(ξ ,η)))◦M, v⊗u〉.
(5.13)

Because FF−1
η→yF

−1
ξ→x

= I on R2n , and M =
(
I 0
I −I

)
=M−1 , formula (5.13) shows that

Km(x,x− y) = F
−1((ψm⊗ψm)F (K ◦M))(x,y). (5.14)

This can be restated as follows:

Proposition 5.11. When a ∈ S∞
1,1 and ψ ∈C∞

0 (Rn) equals 1 in a neighbourhood of the origin,

then the distribution kernel Km(x,y) of u 7→ a
m(x,D)um , cf (5.12), is the function in C∞(Rn×Rn)

given by

Km(x,y) = F
−1(ψm⊗ψm)∗ (K ◦M)(x,x− y), (5.15)

which is the conjugation by ◦M of the convolution of K(x,y) by 4nmF−1(ψ ⊗ψ)(2mx,2my).

Naturally, this result will be useful for the discussion in the next section.

6. PRESERVATION OF C∞ -SMOOTHNESS

It is well known that classical pseudo-differential operators A= a(x,D) are pseudo-local,

singsuppAu⊂ singsuppu for every u ∈ D(A). (6.1)

In the context of type 1,1-operators, the requirement u ∈ D(A) should be made explicitly as the
domain D(A) in many cases will be only a proper subspace of S ′(Rn).
It could be useful to call Ω := Rn\singsuppu the regular set of u, for this set has the important
property that regularisations of u converge (not just in S ′(Rn) but also) in the topology of
C∞(Ω). This fact could well be folklore, but references seem unavailable, and since it is the crux
of the below proof of pseudo-locality, details are given for the reader’s convenience.

Lemma 6.1 (The regular convergence lemma). Let u ∈ S ′(Rn) and set ψk(ξ ) = ψ(εkξ ) for
some sequence εkց 0 and ψ ∈ S (Rn). Then

ψk(D)u→ ψ(0) ·u for k→ ∞ (6.2)

in the Fréchet space C∞(Rn \ singsuppu). If F−1ψ ∈ C∞
0 (Rn) the conclusion holds for all

u ∈ D ′(Rn), if ψk(D)u is replaced by (F−1ψk)∗u.
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The main case is of course ψ(0) = 1. For ψ(0) = 0 one obtains the occasionally useful fact
that ψk(D)u→ 0 in C∞ over the regular set of u.

Proof. Let K ⋐ Rn \ singsuppu =: Ω and take a partition of unity 1 = ϕ + χ with ϕ ∈C∞(Rn)
such that ϕ ≡ 1 on a neighbourhood of K and suppϕ ⋐ Ω. This gives a splitting ψk(D)u =
ψk(D)(ϕu)+ψk(D)(χu) where ϕu ∈C∞

0 (Rn). Since
∫

F−1ψ dx= ψ(0),

Dα [
∨
ψk ∗ (ϕu)−ψ(0)ϕu] =

∫
∨
ψ(y)[Dα(ϕu)(x− εky)−D

α(ϕu)(x)]dy

= −
n

∑
j=1

∫ ∫ 1

0

∨
ψ(y)∂x jD

α(ϕu)(x−θεky)εky j dθdy. (6.3)

Using the seminorms in (2.5) in a crude way,

|∂ jD
α(ϕu)(x−θεky)εky j| ≤ εk|y|‖ϕu |S , |α|+1‖ց 0, (6.4)

so consequently Dα(
∨
ψk ∗ (ϕu)) → ψ(0)Dαu uniformly on K .

For ψk(D)(χu) it is used that continuity of S (Rn)
u
−→ C gives c, N > 0 such that

|〈χu, Dα
x

∨
ψk(x−·)〉| ≤ c sup

y∈Rn, |β |≤N

〈y〉N

ε
n+|α |
k

∣∣Dβ
y (χ(y)Dα ∨

ψ(
x− y

εk
))

∣∣. (6.5)

Here 0 < d := dist(K,suppχ) ≤ |x− y| for x ∈ K , y ∈ suppχ , so every negative power of εk
fulfils ε−lk ≤ (1+ ε−1k |x− y|)l/dl . Moreover, (1+ |y|)N ≤ cK(1+ |x− y|/εk)

N for εk < 1. So

evaluation of an S -seminorm at F−1ψ yields supK |D
α(F−1ψk ∗ (χu))| ≤Cεkց 0.

When F−1ψ ∈C∞
0 it is clear that (F

−1ψk)∗ (χu) = 0 holds around K eventually. ¤

In the sequel the main case is the one in which ψ itself has compact support, so the proof
above is needed.

6.1. The pseudo-local property. The following sharpening of Lemma 6.1 shows that, in certain
situations, one even has convergence fψk(D)u→ f u in S . To obtain this in a general set-up,

let x ∈ Rn be split in two groups as x= (x′,x′′) with x′ ∈ Rn
′
, x′′ ∈ Rn

′′
.

Proposition 6.2. Suppose u ∈ S ′(Rn) has singsuppu ⊂ {x = (x′,x′′) | x′′ = 0} and that f u ∈
S (Rn) for every f in the subclass C ⊂C∞

b (Rn) consisting of the f for which |x′| is bounded on
supp f and supp f ∩{x | x′′ = 0} = /0. Then

fF−1(ψk
∧
u) −−−→
k→∞

ψ(0) f u in S (Rn), (6.6)

for every sequence ψk = ψ(εk·) given as in Lemma 6.1.

Proof. For f ∈ C it is straightforward to see that there is a δ such that

inf{|x′′| | x ∈ supp f } ≥ δ > 0. (6.7)
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One can then take ϕ ∈ C such that ϕ ≡ 1 where |x′′| ≥ δ/2, hence on K = supp f . Mimicking
the proof of Lemma 6.1, compactness of K is not needed since ϕu is in S by assumption.
Instead of (6.4) one should estimate

〈x〉N |∂ jD
α(ϕu)(x−θεky)εky j|, (6.8)

but (1+ |x|)N ≤ (1+ |x− θεky|)
N(1+ |y|)N when εk < 1, so it follows mutatis mutandem that

for an arbitrary seminorm,

‖ f
∨
ψk ∗ (ϕu)−ψ(0) f u |S ,N‖ ≤ cεkց 0. (6.9)

And because χ = 1−ϕ fulfils d = dist(K,suppχ) ≥ δ
2 > 0, one gets as in (6.5),

‖ f
∨
ψk ∗ (χu) |S ,N‖ ≤ cεk. (6.10)

Indeed, 〈x〉N ≤ (1+ |y|)N(1+ |x− y|/εk)
N and now factors like 〈y〉N are harmless as

(1+ |y|)N ≤ (1+ |y′|)N(1+ |y′′|)N ≤ (1+ |x′|)N(1+ |y− x|)N(1+ |y′′|)N , (6.11)

where |y′′| < δ on suppχ whilst |x′| is bounded on supp f . ¤

For distribution kernels there is a similar result, but in this case it is well known that one need
not assume rapid decay: let f ∈C∞

b (R2n) have its support disjoint from the diagonal ∆ = {(x,x) |
x ∈ Rn } and bounded in the x-direction, ie

∆∩ supp f = /0

∃R> 0: (x,y) ∈ supp f =⇒ |x| ≤ R.
(6.12)

Then f (x,y)K(x,y) is in S (R2n) whenever K is the kernel of a type 1,1-operator. Indeed,

(1+ |(x,y)|)N ≤ (1+ |x|)N(1+ |y|)N ≤ (1+ |x|)2N(1+ |y− x|)N (6.13)

and here |x| is bounded on supp f , so by setting z= x−y in (4.6) one has that 〈(x,y)〉NDα
x D

β
y ( f K)

is bounded for all N , α , β . Invoking Proposition 6.2 this gives

Proposition 6.3. If a ∈ S∞
1,1(R

n×Rn) has kernel K and Km is the approximating kernel given

by (5.15), then it holds for every f ∈C∞
b (R2n) with the property (6.12) that

fKm −−−→
m→∞

f K in S (R2n). (6.14)

Proof. The class C of Proposition 6.2 contains f (x,x− y), and Proposition 5.11 gives

f (x,x− y)Km(x,x− y) = f (x,x− y)F−1(ψm⊗ψm)∗ (K ◦M). (6.15)

The right-hand side tends to ( f K)◦M in S (R2n) according to Proposition 6.2, so it remains to
use the continuity of ◦M in S (Rn). ¤

It can now be proved that operators of type 1,1 are pseudo-local. The argument below is
classical up to the appeal to (6.18). In case A is S ′-continuous, this formula follows at once
from the density of S in S ′ . However, in general A is not even closable, but instead the
limiting procedure of Definition 5.1 applies via the approximation in Proposition 6.3.



TYPE 1,1-OPERATORS 27

Theorem 6.4. For every a ∈ S∞
1,1(R

n×Rn) the operator A= a(x,D) has the pseudo-local prop-

erty; that is singsuppAu⊂ singsuppu for every u ∈ D(A).

Proof. Let ψ,χ ∈C∞
0 (Rn) have supports disjoint from singsuppu such that χ ≡ 1 around suppψ .

Then χu ∈C∞
0 (Rn) so that also (1−χ)u is in the subspace D(A) and

ψAu= ψA(χu)+ψA(1−χ)u. (6.16)

Here ψA(χu) ∈C∞
0 (Rn) since A : S → S , while ψA(1−χ)u is seen at once to have kernel

K̃(x,y) = ψ(x)K(x,y)(1−χ(y)). (6.17)

The function f (x,y) = ψ(x)(1− χ(y)) fulfils (6.12), for ∆ contains no contact point of { f 6=
0} because dist(suppψ,supp(1− χ)) > 0. Therefore K̃ ∈ S (R2n) as seen after (6.12). This
strongly suggests that, with χ1 = 1−χ ,

〈ψAχ1u, ϕ 〉 = 〈ϕ ⊗u, K̃ 〉 for all ϕ ∈C∞
0 (Rn). (6.18)

And it suffices to prove this identity, for by definition of the tensor product it entails that ψAχ1u=
〈u, K̃(x, ·)〉 which is a C∞-function of x ∈ Rn .
Now if Am := OP(a

m(x,η)ψm(η)) and Km is its kernel, one can take ul ∈C
∞
0 (Rn) such that

ul → u in S ′ . Applying Definition 5.1 to A, the S ′-continuity of Am gives

〈ψAχ1u, ϕ 〉 = lim
m→∞

〈Amχ1u, ψϕ 〉 = lim
m→∞

lim
l→∞

〈Km, (ψϕ)⊗ (χ1ul)〉. (6.19)

Here Km ∈ C∞(R2n) by Lemma 5.11, so for the right-hand side one finds, since u 7→ ϕ ⊗ u is
S ′-continuous and f Km ∈ S (R2n),

∫
ψ(x)ϕ(x)χ1(y)ul(y)Km(x,y)d(x,y) −−−→

l→∞
〈ϕ ⊗u, (ψ ⊗χ1)Km 〉. (6.20)

As (ψ ⊗χ1)Km = f Km→ f K = K̃ in S (R2n) by Proposition 6.3, the proof is complete. ¤

Remark 6.5. Theorem 6.4 was anticipated by C. Parenti and L. Rodino [PR78], although they
just appealed to the fact that K(x,y) is C∞ for x 6= y. This does not quite suffice as ψAχ1u should
be identified with eg 〈u, K̃(x, ·)〉 for u ∈ D(A) \S (Rn); which is non-trivial in the absence of
continuity and the usual rules of calculus.

6.2. A digression on products. The opportunity is taken here to settle an open problem for the
generalised pointwise product π(u,v) mentioned in Remark 1.1.

First the commutation of pointwise multiplication and vanishing frequency modulation is
discussed. Let u ∈ S ′(Rn) and f ∈ OM(Rn) be given and ψm = ψ(2−m·) for some arbitrary
ψ ∈ S (Rn) with ψ(0) = 1. Approximating f u in two ways in S ′ ,

Bmu := ψm(D)( f u)− fψm(D)u→ 0 for m→ ∞. (6.21)

This commutation in the limit is not, however, a direct consequence of pseudo-differential calcu-
lus, for the commutator Bm has amplitude bm(x,y,η) = ( f (y)− f (x))ψ(2−mη), which is in the

space of symbols with estimates |Dα
ηD

β
x,ya(x,y,η)| ≤Cα ,β ,K,N〈η〉−N for all N > 0, K ⋐ Rn×Rn .

As such OP(bm(x,y,η)) is only defined on E ′(Rn).
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However, (6.21) is seen at once to hold in C∞(Rn \ singsuppu), by using Lemma 6.1 on both
terms. The next results confirms that Bmu→ 0 even in C

∞(Rn), despite the singularities of u.
The idea is to use Lemma 6.1 once more to get a reduction to f ∈C∞

0 (Rn), so that Bm→ 0 in the
globally estimated class OP(S−∞(Rn×Rn)):

Proposition 6.6. When u ∈S ′(Rn), f ∈OM(Rn), and ψ ∈S (Rn) with ψ(0) = 1, it holds true
that limm→∞(ψm(D)( f u)− fψm(D)u) = 0 in the topology of C∞(Rn).

Proof. When χ ∈ C∞
0 (Rn) equals 1 on a neighbourhood of a given compact set K ⊂ Rn , then

K is contained in the regular set of (1− χ)u, so it follows as above from Lemma 6.1 that
supK,|α |≤l |D

α(ψm(D)( f (1−χ)u)− fψm(D)(1−χ)u)| → 0 for m→ ∞.
It now suffices to cover the case K ⊂ suppu⊂ supp f ⋐ Rn . Then Bm has symbol

bm(x,η) = (eiDx·Dη −1) f (x)ψm(η) ∈ S−∞(Rn×Rn). (6.22)

However, u ∈ Ht for some t < 0, and Bm ∈ B(Ht ,Hs) for all s> 0, whence

∑
|α |≤l

‖DαBmu‖∞ ≤ c‖Bmu‖Hs ≤ c‖Bm‖‖u‖Ht for s> l+n/p. (6.23)

It remains to show that the operator norm ‖Bm‖ → 0. Using direct estimates as in eg [Hör88,
Prop. 2.2], it is enough to show for all N > 0, α , β that

lim
m→∞

sup
η∈Rn

〈η〉N |Dβ
xD

α
ηbm(x,η)| → 0 for m→ ∞. (6.24)

But Dα
η , D

β
x commute with e

iDx·Dη , so it suffices to treat α = 0 = β for general f and ψ , ie to
show that uniformly in x ∈ Rn

|(eiDx·Dη −1) f (x)ψm(η)| ≤ c ∑
|α |+|β |≤2n+2

|Dβ
xD

α
ηDx ·Dη f (x)ψm(η)| = O(2−m(|α |+1)〈η〉−N).

(6.25)
The estimate to the left is known, and follows directly from [Hör88, Prop. B.2].
Altogether supx∈K,|α |≤l |D

αBmu| → 0 for m→ ∞, as claimed. ¤

Besides being of interest in its own right, Proposition 6.6 gives at once a natural property of
associativity for the product π in Remark 1.1.

Theorem 6.7. The product (u,v) 7→ π(u,v) is partially associative, ie when (u,v) ∈ S ′(Rn)×
S ′(Rn) is in the domain of π so is ( f u,v) and (u, f v) for every f ∈ OM(Rn) and

fπ(u,v) = π( f u,v) = π(u, f v). (6.26)

Proof. For every ϕ ∈C∞(K) =
{

ψ ∈C∞
0 (Rn)

∣∣ suppψ ⊂ K
}
, K ⋐ Rn

〈( f u)mvm, ϕ 〉−〈 f ·umvm, ϕ 〉 = 〈vm, (( f u)m− f ·um)ϕ 〉 −−−→
m→∞

0, (6.27)

for by Banach–Steinhauss’ theorem it suffices to show that (( f u)m− f · um)ϕ → 0 in C∞(K),
which holds since ( f u)m− f ·um→ 0 in C∞(Rn) according to Proposition 6.6. Hence fπ(u,v) =
π( f u,v); the other identity is justified similarly. ¤
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7. EXTENDED ACTION OF DISTRIBUTIONS

To prepare for Section 8 it is exploited that the map (u, f ) 7→ 〈u, f 〉 is defined also for certain
u, f in D ′(Rn) that do not belong to dual spaces. This bilinear form is moreover shown to have
a property of stability under regular convergence.

7.1. A review. First it is recalled that the product f u is defined for f ,u ∈ D ′(Rn) if

singsupp f
⋂
singsuppu= /0. (7.1)

In fact, Rn is covered by Y1 = Rn \ singsuppu and Y2 = Rn \ singsupp f ; in Y1 there is a product
( f u)Y1 ∈ D ′(Y1) given by 〈( f u)Y1 , ϕ 〉 = 〈 f , uϕ 〉 for ϕ ∈ C∞

0 (Y1), and similarly 〈u, fϕ 〉, ϕ ∈
C∞
0 (Y2) defines a product ( f u)Y2 ∈D ′(Y2); and for ϕ ∈C∞

0 (Y1∩Y2) both products are given by the
C∞-function f (x)u(x) so they coincide on Y1∩Y2; hence f u is well defined in D ′(Rn) and given
on ϕ ∈C∞

0 (Rn) by the following expression, where the splitting ϕ = ϕ1+ϕ2 for ϕ j ∈C
∞
0 (Y j) is

obtained from a partition of unity,

〈 f u, ϕ 〉 = 〈 f , uϕ1 〉+ 〈u, fϕ2 〉. (7.2)

This follows from the recollement de morceaux theorem, cf [Sch66, Thm. I.IV] or [Hör85,
Thm. 2.2.4]; by the proof of this, (7.2) does not depend on how the partition is chosen.

Remark 7.1. Therefore, when F1 , F2 are given closed sets in Rn such that singsuppu ⊂ F1 ,
singsupp f ⊂ F2 and F1∩F2 = /0 (so that Rn is covered by their complements) one can always
take the splitting in (7.2) such that ϕ1 ∈C

∞
0 (Rn \F1), ϕ2 ∈C

∞
0 (Rn \F2).

Secondly f 7→ 〈u, f 〉 for u ∈ D ′(Rn) is a well defined linear map on the subspace of f ∈
D ′(Rn) such that (7.1) holds together with

suppu∩ supp f ⋐ Rn. (7.3)

In fact 〈u, f 〉 := 〈 f u, 1〉 is possible: f u is defined by (7.1) and is in E ′ by (7.3), so by [Hör85,
Th 2.2.5] the map ψ 7→ 〈 f u, ψ 〉 extends from C∞

0 (Rn) to all ψ ∈C∞(Rn), uniquely among the
extensions that vanish when suppψ ∩ supp f u = /0; hence it is defined on the canonical choice
ψ ≡ 1, and for all ϕ ∈C∞

0 (Rn) equal to 1 around supp f u,

〈u, f 〉 = 〈 f u, 1〉 = 〈 f u, ϕ 〉. (7.4)

These constructions have been quoted in a slightly modified form from [Hör85, Sect. 3.1].
The definition implies that ( f ,u) 7→ f u is bilinear; it is clearly commutative and is partially
associative in the sense that ψ( f u) = (ψ f )u= f (ψu) when ψ ∈C∞(Rn) while f , u fulfill (7.1).
This also yields

supp f u⊂ supp f ∩ suppu. (7.5)

For application of cut-off functions, partial associativity entails (χ f )(ϕu) = f u when χ , ϕ
equal 1 around supp f ∩ suppu. Then test against 1 gives 〈ϕu, χ f 〉 = 〈u, f 〉.
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7.2. Stability under regular convergence. The product f u is not continuous, for f = 0 is the

limit in D ′ of f ν = e−ν |x|2 ∈C∞ and for u= δ0 it is clear that f
νu= δ0 6→ 0= f u. As a remedy

it is noted that f u is separately stable under regular convergence; cf Lemma 6.1. This carries
over to the extended bilinear form 〈 ·, · 〉 under a compactness condition:

Theorem 7.2. Let u, f ∈D ′(Rn), f ν ∈C∞(Rn) fulfil limv f
ν = f in both D ′(Rn) and C∞(Rn\F)

for F = singsupp f . When u, f have disjoint singular supports, cf (7.1),

f νu→ f u in D
′(Rn) for ν → ∞. (7.6)

If moreover suppu
⋂
supp f is compact and χ ∈C∞

0 (Rn) equals 1 around this set, then

lim
ν→∞

〈χu, f ν 〉 = lim
ν→∞

〈u, χ f ν 〉 = 〈u, f 〉. (7.7)

Here one can take χ ≡ 1 if a compact set contains suppu or every supp( f νu). The conclusions
hold verbatim when F ⊂ Rn is closed and singsupp f ⊂ F ⊂ (Rn \ singsuppu).

Proof. To show (7.6) for a general F , note that (7.2) applies to the product f νu of f ν ∈C∞ and
u ∈ D ′ . Using Remark 7.1 and that f ν → f in C∞(Rn \F), one has f νϕ2→ fϕ2 in C

∞
0 (Rn \

F); the other term on the right-hand side of (7.2) converges by the D ′-convergence of the f ν .
Therefore 〈 f νu, ϕ 〉 → 〈 f , uϕ1 〉+ 〈u, fϕ2 〉 = 〈 f u, ϕ 〉.
By the definition of 〈u, f 〉 above, when χ is as in the theorem, then the just proved fact that
f νu→ f u in D ′ leads to (7.7) since

〈u, f 〉 = 〈 f u, 1〉 = 〈 f u, χ 〉 = lim
ν→∞

〈 f νu, χ 〉. (7.8)

When
⋃

ν supp( f
νu) is precompact and χ = 1 on a neighbourhood, then 0 = 〈 f νu, 1− χ 〉 can

be added to (7.8), which yields limν〈u, f
ν 〉 by the extended definition of 〈 ·, · 〉. ¤

Remark 7.3. In general (7.7) cannot hold without the cut-off function χ . Eg for n ≥ 2 and
x = (x′,xn) one may take f = 1{xn≤0} and u = 1{xn≥1/|x′|2} , so that 〈u, f 〉 = 0. Setting f ν =

2nνϕ(2ν ·)∗ f for ϕ ∈C∞
0 with ϕ ≥ 0,

∫
ϕ = 1, and suppϕ ⊂ {(y′,yn) | 1≤ yn ≤ 2, |y

′| ≤ 1}, it
holds for x ∈ Σν = {0≤ xn ≤ 2

−ν } that xn−2
−νyn ≤ 0 on suppϕ so that

f ν(x) =
∫

ϕ(y) f (x−2−νy)dy=
∫

ϕ dy= 1. (7.9)

Hence suppu∩ supp f ν is unbounded, so 〈u, f ν 〉 is undefined (hardly just a technical obstacle
as 〈u, f ν 〉 =

∫
u f ν dx= ∞ would be the value).

7.3. Consequences for kernels. Although it is on the borderline of the present subject, it would
not be natural to omit that Theorem 7.2 gives an easy way to extend the link between an operator
and its kernel:

Theorem 7.4. Let A : S ′(Rn) → S ′(Rn) be a continuous linear map with distribution kernel
K(x,y) ∈ S ′(Rn×Rn). Suppose that u ∈ S ′(Rn) and v ∈C∞

0 (Rn) satisfy

suppK
⋂
suppv⊗u⋐ Rn×Rn, (7.10)

singsuppK
⋂
singsuppv⊗u= /0. (7.11)
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Then 〈Au, v〉 = 〈K, v⊗ u〉, with extended action of 〈 ·, · 〉. When A is a continuous linear map
D ′(Rn) → D ′(Rn), this is valid for u ∈ D ′(Rn), v ∈C∞

0 (Rn) fulfilling (7.10)–(7.11).

Proof. By the conditions on u and v, the expression 〈K, v⊗u〉 is well defined. By mollification
there is regular convergence to u of a sequence uν ∈C∞(Rn); this gives

v⊗uν −−−→
ν→∞

v⊗u in S
′(Rn×Rn) and C∞(Ω) (7.12)

when Ω = (Rn×Rn)\(suppv×singsuppu) = R2n \singsupp(v⊗u). Applying Theorem 7.2 on
R2n , the cut-off function may be taken as κ(x)χ(y) for some κ,χ ∈C∞

0 (Rn) such that κ equals
1 on suppv and κ ⊗χ = 1 on the compact set suppK∩ supp(v⊗u). This gives

〈K, v⊗u〉 = lim
ν→∞

〈(κ ⊗χ)K, v⊗uν 〉 = lim
ν→∞

〈A(χuν), v〉 = 〈A(χu), v〉. (7.13)

For χ = ψ(2−m·) and ψ = 1 near 0, the conclusion follows from the continuity of A since
ψ(2−m·)u→ u in S ′ . The D ′-case is similar. ¤

Remark 7.5. The conditions (7.10)–(7.11) are far from optimal, for (v⊗u)K acts on 1 if its just
an integrable distribution, that is if (v⊗u)K belongs to D ′

L1
=

⋃
mW

m
1 on R2n . Similarly (7.11)

is not necessary for (v⊗u) ·K to make sense; eg it suffices that (x,ξ ) /∈WF(K)∩ (−WF(v⊗u))
whenever (x,ξ ) ∈ R2n . More generally the existence of the product π(K,v⊗ u) would suffice;
cf Remark 1.1.

The above result applies in particular to the pseudo-differential operators A corresponding to
a standard symbol space S, such as Sd1,0(R

n×Rn). So does the next consequence.

Corollary 7.6. When A is as in Theorem 7.4, it holds for every u ∈ S ′(Rn) that

suppAu⊂ suppK ◦ suppu. (7.14)

Hereby suppK ◦ suppu =
{
x ∈ Rn

∣∣ ∃y ∈ suppu : (x,y) ∈ suppK
}
, which is a closed set if

suppu⋐ Rn . The result extends to u ∈ D ′(Rn) when A is D ′-continuous.

Proof. Whenever v ∈C∞
0 (Rn) fulfils suppv⋐ Rn \ suppK ◦ suppu, then

suppK
⋂
supp(v⊗u) = /0. (7.15)

For else some (x,y) ∈ suppK would fulfill y ∈ suppu and x ∈ suppv, in contradiction with the
support condition on v. By (7.15) the assumptions of Theorem 7.4 are satisfied, so 〈Au, v〉 =
〈K, v⊗u〉 = 0. Hence Au= 0 holds outside the closure of suppK ◦ suppu. ¤

Remark 7.7. The argument of Corollary 7.6 is completely standard for u ∈ C∞
0 , cf [Hör85,

Thm 5.2.4] or [Shu87, Prop 3.1]; a limiting argument then implies (7.14) for general u. However,
the proof above is a direct generalisation of the C∞

0 -case, made possible by the extended action
of 〈 ·, · 〉 in Theorem 7.4. This method may be interesting in its own right; eg it extends to type
1,1-operators also when these are not S ′-continuous, cf Section 8.

8. KERNELS AND TRANSPORT OF SUPPORT

Using the preceeding section, the well-known support rule is here extended to operators of
type 1,1. As a novelty also a spectral support rule is deduced.
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8.1. The support rule for type 1,1-operators. As analogues of Theorem 7.4 and Corollary 7.6
one has:

Theorem 8.1. If a ∈ S∞
1,1(R

n×Rn) has kernel K, then 〈a(x,D)u, v〉 = 〈K, v⊗ u〉 whenever

u ∈ D(a(x,D)), v ∈ C∞
0 (Rn) fulfill (7.10)–(7.11). And for all u ∈ D(a(x,D)) the support rule

holds, ie suppAu⊂ suppK ◦ suppu.

Proof. a(x,D)u= limm→∞Amu where Am =OP(am(1⊗ψm)) ∈OP(S
−∞); its kernel Km is given

by Proposition 5.11. However, Km need not fulfil (7.10) together with u, v, but by use of con-
volutions and cut-off functions one can find uν in C

∞
0 (Rn) such that uν → u in S ′(Rn) and in

C∞(Rn \ singsuppu) for ν → ∞. Then Theorem 7.4 gives

〈Au, v〉 = lim
m→∞

lim
ν→∞

〈Amuν , v〉 = lim
m→∞

lim
ν→∞

〈Km, v⊗uν 〉. (8.1)

To control the supports, one can take a function f fulfilling (6.12) by setting f (x,y) = g(x)h(x−
y) for some g∈C∞

0 (Rn) with g= 1 on suppv and h∈C∞(Rn) such that h(y) = 0 for |y|< 1 while
h(y) = 1 for |y| > 2. Then Km = f Km+(1− f )Km , where the f Km tend to f K in S according
to Proposition 6.3. The supports of (1− f )Km(v⊗ uν), m,ν ∈ N, all lie in the precompact set
B(0,R)×B(0,R+ 2) when B(0,R) ⊃ suppv, so since u, v are assumed to fulfil (7.10)–(7.11),
Theorem 7.2 gives

〈Au, v〉 = lim
m→∞

lim
ν→∞

〈 f Km, v⊗uν 〉+ lim
m→∞

lim
ν→∞

〈(1− f )Km, v⊗uν 〉

= 〈 f K, v⊗u〉+ 〈(1− f )K, v⊗u〉 = 〈K, v⊗u〉.
(8.2)

Now the support rule follows by repeating the proof of Corollary 7.6. ¤

8.2. The spectral support rule. Although it has not attracted much attention, it is a natural and
useful task to determine the frequencies entering x 7→ a(x,D)u(x). But since

Fa(x,D)u= Fa(x,D)F−1(
∧
u) (8.3)

the task is rather to control how the support of
∧
u is changed by Fa(x,D)F−1 , ie by the conju-

gation of a(x,D) by the Fourier transformation.
Even for A ∈ OP(S∞

1,0) this has seemingly not been carried out before. However, since the

map FAF−1 : S ′(Rn) → S ′(Rn) is continuous for such A, it is straightforward to apply The-

orem 7.4 and Corollary 7.6 to the distribution kernelK (ξ ,η) = (2π)−n
∧
a(ξ −η ,η) ofFAF−1;

cf Proposition 4.2. This yields at once the following general result:

Theorem 8.2. If a ∈ S∞
1,0(R

n×Rn) and K is as above, then

suppFa(x,D)u⊂ suppK ◦ suppFu for every u ∈ S
′(Rn). (8.4)

Here the right-hand side is closed if suppFu⋐ Rn .

The result in (8.4) may also be written explicitly as in (1.10)–(1.11). It is easily generalised
to standard symbol spaces S such as S∞

ρ,δ (Rn×Rn) with δ < ρ . For elementary symbols in the

sense of [CM78] the spectral support rule (8.4) follows at once, but as it stands Theorem 8.2
seems to be a new result even for classical type 1,0-operators. The reader is referred to [Joh05,
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Sect. 1.2] for more remarks on Theorem 8.2, in particular that it makes it unnecessary to reduce
to elementary symbols in the Lp-theory (which is implicitly sketched in Section 9 below).

To extend the above to type 1,1-operators, the next result applies to Fa(x,D)F−1 instead of
Theorem 7.4.

Theorem 8.3. Let a ∈ S∞
1,1(R

n×Rn) and denote the distribution kernel of Fa(x,D)F−1 by

K (ξ ,η) = (2π)−n
∧
a(ξ −η ,η); and suppose u ∈D(a(x,D))⊂S ′(Rn) is such that, for some ψ

as in Definition 5.1,

a(x,D)u= lim
m→∞
am(x,D)um holds in S

′(Rn), (8.5)

and that
∧
v ∈C∞

0 (Rn) satisfies

suppK
⋂
supp

∧
v⊗

∧
u⋐ Rn×Rn, singsuppK

⋂
singsupp

∧
v⊗

∧
u= /0. (8.6)

Then it holds, with extended action of 〈 ·, · 〉,

〈Fa(x,D)F−1(
∧
u),

∧
v〉 = 〈K ,

∧
v⊗

∧
u〉. (8.7)

Proof. For u ∈ D(a(x,D)) the left-hand side of (8.7) makes sense by (8.5); and the right-hand
side does so by (8.6), cf Section 7. The equality follows from (8.5):
Letting ψm = ψ(2−m·) there is some ν such that ψν = 1 on a neighbourhood of suppψ , so

ψm+νψm = ψm for all m. Then 1⊗ψm and ψm(ξ −η)ψm(η) equal 1 on the intersection of the
supports in (8.6) for all sufficiently large m, so

〈K ,
∧
v⊗

∧
u〉 = 〈ψm(ξ −η)ψm+ν(η)K (ξ ,η),

∧
v(ξ )ψm(η)

∧
u(η)〉. (8.8)

Here Km = ψm(ξ −η)ψm+ν(η)K (ξ ,η) is the kernel of FAmF
−1 , when Am = OP(am(1⊗

ψm+ν)); cf Proposition 4.2. Clearly Am has symbol in S
−∞ .

Moreover, mollification of ψm
∧
u= Fum gives a sequence (Fum)k of functions inC

∞
0 (Rn), that

all have their supports in a fixed compact set M . Invoking regular convergence, cf Lemma 6.1, it
follows that

∧
v⊗ (Fum)k −−−→

k→∞

∧
v⊗Fum inS

′(R2n) andC∞(Ω) (8.9)

R2n \Ω = supp
∧
v× singsuppFum = singsupp(

∧
v⊗Fum). (8.10)

Since all supports are contained in supp
∧
v×M , Theorem 7.2 applied on R2n and the continuity

of Am in S ′(Rn) imply

〈Km,
∧
v⊗ (Fum)〉 = lim

k→∞
〈Km,

∧
v⊗ (Fum)k 〉 = 〈FAmF

−1(Fum),
∧
v〉. (8.11)

According to Lemma 5.10 the factor ψm+ν can here be removed from the symbol of Am , so it is
implied by (8.8), (8.11) and the explicit assumption of S ′-convergence in (8.5) that

〈K ,
∧
v⊗

∧
u〉 = 〈FAmu

m,
∧
v〉 = lim

m→∞
〈am(x,D)um, F 2v〉 = 〈a(x,D)u, F 2v〉, (8.12)

since F 2v ∈ S . Transposing F , formula (8.7) results. ¤
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The assumption of S ′-convergence in (8.5) cannot be omitted from the above proof, al-
though in the last line 〈am(x,D)um, F 2v〉 is independent of m. Eg cosx is in S ′(R), but since

F (∑mj=0
(−1) j

(2 j) x
2 j) = c0δ0+c2δ

′′
0 + · · ·+cmδ

(m)
0 the power series converges to cosx in D ′ but not

in S ′ as cosine isn’t a polynomial. Moreover, if F v= 1 around 0 for some F v ∈C∞
0 ([−1,1]),

one clearly has 2π = 〈∑mj=0
(−1) j

(2 j) x
2 j, F 2v〉 for every m as the derivaties of F v vanish at the

origin. And yet 〈cos, F 2v〉 = 〈 12(δ1+δ−1), F v〉 = 0 6= 2π .

The next result extends [Joh05, Prop. 1.4] from the case of u ∈C∞(Rn) with supp
∧
u ⋐ Rn to

almost arbitrary distributions u ∈ D(a(x,D)); but the proof is significantly simpler here. Instead
of (8.4), the explicit form given in (1.10)–(1.11) is preferred for practical purposes.

Theorem 8.4 (The spectral support rule). Let a ∈ S∞
1,1(R

n×Rn) and suppose u ∈ D(a(x,D)) is

such that, for some ψ ∈C∞
0 (Rn) equalling 1 around the origin, the convergence of Definition 5.1

holds in the topology of S ′(Rn), ie

a(x,D)u= lim
m→∞
am(x,D)um in S

′(Rn). (8.13)

Then (8.4) holds, that is with Ξ = suppK ◦ supp
∧
u one has

suppF (a(x,D)u) ⊂ Ξ, (8.14)

Ξ =
{

ξ +η
∣∣ (ξ ,η) ∈ supp

∧
a, η ∈ supp

∧
u
}
. (8.15)

When u ∈ F−1E ′(Rn) then (8.13) holds automatically and Ξ is closed for such u.

Proof. That Ξ = suppK ◦ supp
∧
u has the form in (8.15) follows by substituting ζ = ξ + η .

Using Theorem 8.3 instead of Theorem 7.4, the proof of Corollary 7.6 can now be repeated
mutatis mutandis; which gives the inclusion in question.
The redundancy of (8.13) for u ∈ F−1E ′ follows since, by Lemma 5.10, one can for large
m write am(x,D)um = OP(am(1⊗ χ)ψm)u for a fixed cut-off function χ . Then Proposition 5.4
gives S ′-convergence, for multiplication by 1⊗χ commutes with ψm(Dx) and a(1⊗χ)∈ S−∞ .
That Ξ is closed then is straightforward to verify. ¤

Remark 8.5. The set Ξ in (8.15) need not be closed if suppFu is non-compact, for supp
∧
a may

contain points arbitrarily close to the twisted diagonal. Eg if n = 1 and supp
∧
u = [2,∞[ whilst

supp
∧
a consists of the (ξ ,η) such that η ≥ −ξ − 1

ξ
for ξ ≤ −1, and η ≥ 2 for ξ ≥ −1, then

(ξk,ηk) = (−k,k+1/k) fulfils Ξ ∋ ξk+ηk = 1
k
ց 0, although 0 /∈ Ξ.

That a(x,D)u should be in S ′ in (8.13) is natural in order that Fa(x,D)u makes sense before
its support is investigated. One could conjecture that the condition of convergence in S ′ is
redundant, so that it would suffice to assume a(x,D)u is an element of S ′ . But it is not clear
(whether and) how this can be proved.

9. CONTINUITY IN SOBOLEV SPACES

As a last justification of Definition 5.1 its close connection to estimates in Sobolev spaces will
be indicated.
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9.1. Littlewood–Paley decompositions. For the purposes of this section, one may for a ∈
Sd1,1(R

n×Rn) consider the limit

aψ(x,D)u= lim
m→∞
OP(ψ(2−mDx)a(x,η)ψ(2−mη))u. (9.1)

By the definition, u is in D(a(x,D)) if aψ(x,D)u exists for all ψ and is independent of ψ , as ψ
runs through C∞

0 (Rn) with ψ = 1 around the origin.
From aψ(x,D) there is a particularly easy passage to the paradifferential decomposition used
by J.-M. Bony [Bon81]. For this purpose, note that to each fixed ψ there exist R > r > 0 satis-
fying

ψ(ξ ) = 1 for |ξ | ≤ r; ψ(ξ ) = 0 for |ξ | ≥ R≥ 1. (9.2)

Moreover it is convenient to let h stand for an integer such that R≤ r2h−2 .
To obtain a Littlewood–Paley decomposition from ψ , define ϕ = ψ −ψ(2·). Then it is clear
that ϕ(2−k·) is supported in a corona,

suppϕ(2−k·) ⊂
{

ξ
∣∣ r2k−1 ≤ |ξ | ≤ R2k

}
, for k ≥ 1. (9.3)

The identity 1= ψ(ξ )+∑∞
k=1ϕ(2−kξ ) follows by letting m→ ∞ in the telescopic sum,

ψ(2−mξ ) = ψ(ξ )+ϕ(ξ/2)+ · · ·+ϕ(ξ/2m). (9.4)

Using this one can localise functions u(x) and symbols a(x,η) to frequencies |η | ≈ 2 j for j ≥ 1
by setting

u j = ϕ(2− jD)u, a j(x,η) = ϕ(2− jDx)a(x,η) = F
−1
ξ→x

(ϕ(2− jξ )Fx→ξa(ξ ,η)). (9.5)

u0 = ψ(D)u, a0(x,η) = ψ(Dx)a(x,η) (9.6)

Similarly localisation to balls |η | ≤ R2 j are written, now with upper indices, as

u j = ψ(2− jD)u, a j(x,η) = ψ(2− jDx)a(x,η) = F
−1
ξ→x

(ψ(2− jξ )Fx→ξa(ξ ,η)). (9.7)

Moreover, u0 = u0 and a
0 = a0 . In addition both eg a j = 0 and a

j = 0 should be understood
when j < 0. (In order not to have two different meanings of sub- and superscripts on functions,
the dilations ψ(2− j·) are simply written as such; and the corresponding Fourier multiplier as
ψ(2− jD).) Note that ak(x,D) = OP(ψ(2−kDx)a(x,η)) etc.
However, returning to (9.1), the relation (9.4) applies twice, whence bilinearity gives

am(x,D)um=OP([a0(x,η)+ · · ·+am(x,η)][ψ(η)+ · · ·+ϕ(2−mη)])u=
m

∑
j,k=0

a j(x,D)uk. (9.8)

Of course the sum may be split in three groups in which j ≤ k− h, | j− k| < h and k ≤ j− h,
respectively. In the limit m→ ∞ this gives the decomposition

aψ(x,D)u= a
(1)
ψ (x,D)u+a

(2)
ψ (x,D)u+a

(3)
ψ (x,D)u, (9.9)
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whenever a and u fit together such that the three series below converge in D ′(Rn):

a
(1)
ψ (x,D)u=

∞

∑
k=h

∑
j≤k−h

a j(x,D)uk =
∞

∑
k=h

ak−h(x,D)uk (9.10)

a
(2)
ψ (x,D)u=

∞

∑
k=0

(
ak−h+1(x,D)uk+ · · ·+ak−1(x,D)uk+ak(x,D)uk

+ak(x,D)uk−1+ · · ·+ak(x,D)uk−h+1
)

(9.11)

a
(3)
ψ (x,D)u=

∞

∑
j=h

∑
k≤ j−h

a j(x,D)uk =
∞

∑
j=h

a j(x,D)u j−h. (9.12)

Also (9.11) has a brief form, namely

a
(2)
ψ (x,D)u=

∞

∑
k=0

((ak−ak−h)(x,D)uk+ak(x,D)(uk−1−uk−h)). (9.13)

One advantage of the decomposition is that the terms of the first and last series fulfil a dyadic
corona condition; whereas the in second the spectra are in general only restricted to balls:

Proposition 9.1. If a ∈ Sd1,1(R
n×Rn) and u ∈ S ′(Rn), and r, R are chosen as in (9.2) for each

auxiliary function ψ , then every h ∈ N such that R≤ r2h−2 gives

suppF (ak−h(x,D)uk) ⊂
{

ξ
∣∣ r
4
2k ≤ |ξ | ≤

5R

4
2k

}
(9.14)

suppF (ak(x,D)uk−h) ⊂
{

ξ
∣∣ r
4
2k ≤ |ξ | ≤

5R

4
2k

}
. (9.15)

Moreover, for a
(2)
ψ (x,D),

suppF
(
ak(x,D)(uk−1−uk−h)+(ak−ak−h)(x,D)uk

)
⊂

{
ξ

∣∣ |ξ | ≤ 2R2k
}

(9.16)

If a satisfies (1.19) this support is contained in
{

ξ
∣∣ r

2h+1C
≤ |ξ | ≤ 2R2k

}
(9.17)

for all k ≥ h+1+ log2(C/r).

This proposition follows straightforwardly from the spectral support rule in Theorem 8.4, with
a special case explained in [Joh05], so further details should hardly be needed here.
In addition one can estimate each series using the Hardy–Littlewoodmaximal operatorMuk(x).
This gives eg for ν = 1, when the Fefferman–Stein inequality is used in the last step,

(∫

Rn

( ∞

∑
k=h

|2skak−h(x,D)uk(x)|
2
) p
2 dx

) 1
p ≤ c(a)

∥∥( ∞

∑
k=0

|2(s+d)kMuk(·)|
2
)1
2
∥∥
p
≤ c′c(a)‖u‖

Hs+dp
;

(9.18)
here c(a) is a continuous seminorm on a ∈ Sd1,1 . Similar estimates are obtained for ν = 2 and
ν = 3. The reader is referred to [Joh05] for brevity here. (Although the set-up was more general
there with Besov spaces Bsp,q and Triebel–Lizorkin spaces F

s
p,q , it is easy to specialise to the

present situation, mainly by setting q= 2 in the treatment of the Fsp,q there. One difference in the
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framework of [Joh05] is that certain functions Φ̃ j enter the expressions a j,k(x,D)uk there, but

the Φ̃ j amount to special choices of χ in the above formula (5.12), hence may be removed when
convenient.)
Combining such estimates with Proposition 9.1 it follows in a well-known way that for ν = 1
and ν = 3,

‖a
(ν)
ψ (x,D)u‖Hsp ≤ c‖u‖Hs+dp for s ∈ R, 1< p< ∞. (9.19)

For ν = 2 this holds for s> 0, because the coronas are replaced by balls.

Consequently u 7→ aψ(x,D)u= a
(1)
ψ (x,D)u+a

(2)
ψ (x,D)u+a

(3)
ψ (x,D)u is a bounded linear op-

erator Hs+dp (Rn) → Hsp(R
n) for s> 0 and

‖aψ(x,D)u‖Hsp ≤C(a)‖u‖
Hs+dp

, (9.20)

where C(a) is a continuous seminorm on a ∈ Sd1,1 . Moreover, if a fulfils (1.19), then the last part
of Proposition 9.1 leads to continuity for all s ∈ R.
Moreover, density of the Schwartz spaceS (Rn) in Hs+dp (Rn) yields that aψ(x,D) is indepen-
dent of ψ , for they all agree with OP(a)u whenever u ∈ S (Rn); cf (9.9), (9.8) and (2.4). So by
Definition 5.1 it follows that a(x,D)u is defined on every u ∈ Hs+dp with s > 0; more precisely
one has

Theorem 9.2. Let a(x,η) be a symbol in Sd1,1(R
n×Rn). Then for every s > 0, 1 < p < ∞ the

type 1,1-operator a(x,D) has Hsp(R
n) in its domain and it is a continuous linear map

a(x,D) : Hs+dp (Rn) → Hsp(R
n). (9.21)

This property extends to all s ∈ R when a fulfils the twisted diagonal condition (1.19).

In [Joh05] a similar proof was given for Besov and Lizorkin–Triebel spaces, ie for Bsp,q and

Fsp,q . But this contains the above Theorem 9.2 in view of the well-known identification H
s
p(R

n) =
Fsp,2(R

n) for 1 < p < ∞, which through a reduction to s = 0 results from the Littlewood–Paley
inequality. The reader is referred to the more general continuity results in [Joh05], which also
cover the Hölder–Zygmund classes because of the identification Cs = Bs∞,∞ .

However, a little precaution is needed because S (Rn) is not dense in Bs∞,q . Even so a(x,D)
is defined on and bounded from Bs∞,q for s> d (and s= d , q= 1 cf (1.20) ff and [Joh05, (1.6)]),
which may be seen from the Besov space estimates of [Joh05] and the argument preceeding
Theorem 9.2 as follows. By lowering s one can arrange that q < ∞, in which case it is well-
known that Bs∞,q

⋂
F−1E ′ is dense; whence aψ(x,D)u is independent of ψ for all u ∈ Bs∞,q if

it is so for all u ∈ F−1E ′ . This last property is a consequence of the fact that F−1E ′ is in the
domain of a(x,D); cf Theorem 5.5 and Remark 5.6.

Remark 9.3. It is evident that the counter-example in Proposition 3.3 relied on an extension of
continuity of a2θ (x,D) to a bounded operator Hs+d → Hs for arbitrary s < d . Moreover, this
extension has not previously been identified with the definition of a2θ (x,D) by vanishing fre-
quency modulation. However, by the density of S , it follows from the last part of Theorem 9.2
that these two extensions are identical, whence the operators in Definition 5.1 lack the microlocal
property in the treated cases.
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9.2. Composite functions. Finally it is verified that the formal definition of type 1,1-operators
by vanishing frequency modulation also plays well together with Meyer’s formula for composite
functions.

Consider the map u 7→ F ◦ u given by F(u(x)) for a fixed F ∈C∞(R) and a real-valued u ∈
H
s0
p0(R

n) for s0 > n/p0 , 1 < p0 < ∞. Then u is uniformly continuous and bounded on Rn as
well as in Lp(R

n) for p0 ≤ p ≤ ∞. Note that with the notation of the previous section, and in
particular (9.4), one has in Lp(R

n)

u0+u1+ · · ·+um = um = 2mnF−1ψ(2m·)∗u−−−→
m→∞

u. (9.22)

Assuming that F(0) = 0 when p < ∞, then v 7→ F ◦ v is Lipschitz continuous on the metric
subspace Lp(R

n,B) for every ball B⋐ R,

F(w(x))−F(v(x)) =
∫ 1

0
F ′(v(x)+ t(w(x)− v(x)))dt · (w(x)− v(x)) (9.23)

‖F ◦w−F ◦ v‖p ≤ sup
B

|F ′| · ‖w− v‖p. (9.24)

Since ‖um‖∞ ≤ ‖F−1ψ‖1‖u‖∞ , one can take B so large that it contains u(R
n) and um(Rn) for

every m, so since uk−uk−1 = uk it follows that with limits in Lp , p0 ≤ p≤ ∞,

F(u(x)) = lim
m→∞
F(um(x)) = F(0)+ lim

m→∞

m

∑
k=0

(F(uk(x))−F(uk−1(x)))

= F(0)+
∞

∑
k=0

∫ 1

0
F ′(uk−1(x)+ tuk(x))dt ·ϕ(2−kD)u(x).

(9.25)

Setting mk(x)=
∫ 1
0 F

′(uk−1(x)+tuk(x))dt it is not difficult to see that mk ∈C
∞(Rn) with bounded

derivatives of any order because Dβuk = 2
k(n+|β |) ∨

ϕ(2k·)∗u; and since 2k ≈ |η | on suppϕ(2−k·)
that

au(x,η) :=
∞

∑
k=0

mk(x)ϕ(2−kη) ∈ S01,1(R
n×Rn). (9.26)

That the corresponding type 1,1-operator au(x,D) gives important information on the function
F(u(x)) was the idea of Y. Meyer [Mey81a, Mey81b], and it is now confirmed that his results
remain valid when the operators are based on Definition 5.1:

Theorem 9.4. When u ∈ Hs0p0(R
n) for s0 > n/p0 , 1 < p0 < ∞ is real valued, and F ∈ C∞(R)

with F(0) = 0, then the type 1,1-operator au(x,D) is a bounded linear operator

au(x,D) : Hsp(R
n) → Hsp(R

n) for every s> 0, 1< p< ∞. (9.27)

Taking s= s0 , p= p0 one has au(x,D)u(x) = F(u(x)), and the map u 7→ F ◦u is continuous on
H
s0
p0(R

n,R).
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Proof. The continuity on Hsp follows from Theorem 9.2 since au ∈ S
0
1,1 . As the proof of this

theorem shows, the operator norm ‖b(x,D)‖ in B(Hsp) is estimated by a seminorm c(b) on

b ∈ S01,1 ⊂ S
1
1,1 , and (9.26) converges in S

1
1,1 , so one has in B(Hsp) that

OP(
m

∑
k=0

mk(x)ϕ(2−kη)) −−−→
m→∞

au(x,D). (9.28)

By (9.25) this implies that in the larger space Lp0

au(x,D)u= lim
m→∞
OP(

m

∑
k=0

mk(x)ϕ(2−kη))u=
∞

∑
k=0

mk(x)ϕ(2−kD)u= F ◦u. (9.29)

Hence u 7→ F ◦u is a map Hs0p0 → H
s0
p0 , which is continuous since for v→ u

F(v(x))−F(u(x)) = au(x,D)(v−u)+[av(x,D)−au(x,D)]u

+[av(x,D)−au(x,D)](v−u) → 0.
(9.30)

Indeed, by continuity of au(x,D) the first term tends to 0, and by the Banach–Steinhauss theorem
the two other terms do so if only av(x,D) → au(x,D) in B(Hs0p0), ie if av→ au in S

0
1,1 . However,

the non-linear map u 7→ au is continuous from H
s0
p0 to S

0
1,1 , for (1+ |η |)|α |−|β ||Dα

ηD
β
x (av(x,η)−

au(x,η))| is at each η estimated uniformly by terms that either have ‖v− u‖∞ as a factor or

contains supx∈Rn
∫ 1
0 |F

(l)(vk−1(x)+ tvk(x))−F
(l)(uk−1(x)+ tuk(x))|dt , which tends to 0 by the

uniform continuity of F(l) on a sufficiently large ball. ¤

Among the merits of the theorem, note that for s non-integer it is non-trivial to prove that
F(u(x)) is in Hsp when u is so. When needed the reader may derive similar results for the B

s
p,q

and Fsp,q from the estimates in [Joh05].

Remark 9.5. As a small extension of the above, it may be noted that when F ′ is bounded on R,
then the assumption on u can be relaxed to u ∈ Lp0 for 1≤ p0 ≤ ∞, for F(u(x)) is defined, and
the linearisation formula (9.25) still holds as u 7→ F ◦ u is Lipschitz on Lp0(R

n,R) in this case
(however, the symbol au(x,η) has much weaker properties).
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Mathématique de France, Paris, 1978.

[FJ85] M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J. 34 (1985), 777–799.

[FJ90] M. Frazier and B. Jawerth, A discrete transform and decomposition of distribution spaces, J. Func. Anal.

93 (1990), 34–170.



40 JON JOHNSEN

[Gar94] G. Garello, Microlocal properties for pseudodifferential operators of type 1,1, Comm. Partial Differen-
tial Equations 19 (1994), 791–801.
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