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Unsteady simulations of the flow in a channel flow
and a ventilated room using the SST-SAS model*

Lars Davidson' and Peter V. Nielsen?
tDivision of Fluid Dynamics, Department of Applied Mechanics
Chalmers University of Technology, SE-412 96 Goteborg, Sweden
{Building Technology and Structural Engineering
Aalborg University, DK-9000 Aalborg, Denmark

1 Abstract

The SAS model (Scale Adapted Simulation) was invented by Menter and
his co-workers. The idea behind the SST-SAS model is to add an additional
production term — the SAS term — in the w equation which is sensitive to re-
solved (i.e. unsteady) fluctuations. In regions where the flow is on the limit
of going unsteady, the object of the SAS term is to increase w. The result is
that k and v, are reduced so that the dissipating (damping) effect of the tur-
bulent viscosity on the resolved fluctuations is reduced, thereby promoting
the momentum equations to switch from steady to unsteady mode.

The SST-SAS model is evaluated for two flows: developing channel flow
and the flow in a three-dimensional ventilated room. Unsteady inlet bound-
ary conditions are prescribed in both cases by superimposing isotropic syn-
thetic fluctuations on a steady inlet boundary velocity profile.

2 The k£ — kL Turbulence Model

2.1 Derivation

Rotta (1972) derived an exact equation for kL based on the integral length

scale. 3
— [ Rabemdn, Ry = wButr (1)

In all two-equation models there is one production term and one destruction
term. Rotta’s kL equation includes two production terms, namely (here

kL

*The initial part of this work was carried out during the first author’s stay at Aalborg
University



given in boundary-layer form)
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To simplify the second term, Rotta used Taylor expansion so that

du(x+n) _ 0u(x) Pa(x) | 1 ,0%u(x)

a3y By n By 27 By +... (3)
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The first term, a, is incorporated in Sy, 7. Rotta set the second term, b, to
ZEero

o J_w

Riondn =0 (4)

because in homogeneous shear flow R19(7) is antisymmetric with respect to
1. The second term in Eq. 2 was consequently modelled with the third term,
¢, including the third velocity gradient 931/0y3.

Menter and Egorov (2004) argue that homogeneous flow is not a rele-
vant flow case, because then the second velocity gradient is zero anyway.
They propose to model the Sjz, r7-term using the second velocity gradient
as (Menter and Egorov, 2004, 2005):

3 / 0u(x +n)
16 dy

%4 (x)

Skr, e = — Riodn = — |uv] o L? (5)

The eddy-viscosity assumption for the shear stress gives |uv| = v|0u/dy].
In three-dimensional flow the shear stress can be estimated by an eddy-
viscosity expression ut(2.§ij§¢j)0'5. Using a general formula for the second
derivative of the velocity we get

Sk, = —S |U"| L
S = (2§ij§ij)0.5

U — 32’17,1' 82’(_1,1' 0-5
N Oz 0z, 0r;0x;

(6)

In the k — kL model the turbulent viscosity, v, and the dissipation term,
€, in the k equation have the form

kL
vy = Clm (7)
k)5/2
=% ®)
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Figure 1: Velocity profiles from a DNS of channel flow. Solid line: time-
averaged velocity; dashed line: instantaneous velocity.

The term Sy r7p in the kL equation is a sink term that reduces kL. The
result is that the turbulent viscosity is reduced because kL appears in the
nominator of the expression for 14, see Eq. 7. This reduction is somewhat
diminished since a decrease in kL also reduces k£ via an increase of the
dissipation term, €, see Eq. 8. However, since kL appears directly in 1, it is
expected that the overall effect of a large Sir, 1 Will be a decrease in v;.

The source term Sy, rrp includes the second velocity gradient. The von
Karman length scale

O(u) /0y

5 (u) [0y ©)
also includes the second velocity gradient. This is interesting because, as
noted by Menter and Egorov (2004), the von Kédrmén decreases when the
momentum equations resolve (part of) the turbulence. The von Kdrméan
length scale is smaller for an instantaneous velocity profile than for a time
averaged velocity, see Fig. 1. When doing URANS or DES, the momentum
equations are triggered through instabilities to go unsteady in regions where
the grid is fine enough. In URANS or in DES operating in RANS mode,
high turbulent viscosity dampens out these instabilities. In many cases this
is an undesired feature, because if the flow wants to go unsteady, it is usually
a bad idea to force the equations to stay steady. One reason is that there
may not be any steady solution. Hence, the equations will not converge.
Another reason is that if the numerical solution wants to go unsteady, the
large turbulent scales will be resolved instead of being modelled. This leads
to a more accurate prediction of the flow.

The role of the term Sy, 115 is that this term gets large when unsteady
resolved velocities appear somewhere in the flow. As discussed above, this
will lead to a reduced turbulent viscosity which means that the resolved
fluctuations are less likely to be dampened. This feature led Menter and his

Lykip =k




co-workers (Menter et al., 2003; Menter and Egorov, 2004, 2005) to introduce
the von Karman length scale in a one-equation model, in a k — k*/2L model
and in a kK — w SST model. In the present study, we will use and evaluate
the modified £ — w SST model.

2.2 The Second derivative

To compute U” in Eq. 6, we need to compute the second velocity gradients.
In finite volume methods there are two main options for computing second
derivatives.

Option I: compute the first derivatives at the faces

@)= w (@),
0y / ji1/2 Ay 9 /) j-1/2 Ay

Pu _ujp —2uj+ui  (Ay)? olu
9y*) (Ay)? 12 oyt

and then

Option II: compute the first derivatives at the center

(5), = (&), ="
0y ) 1 20y 0y /), 2Ay

O%u _ ujre —2ujtujop  (Ay)? 'u
9y*) 4(Ay)? 3 oyt

In the present work Option I is used unless otherwise stated.

and then

2.3 The k —w SST model
The standard k¥ — w SST model reads (Menter, 1994)

O+ 9 (am) =2 [(H ”t)ﬁ] + Py — Bhw
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Now we wish to transform the Sy ;1 term in the k — kL model to the
k —w model. The kL equation (expressed in the dependent variables k& and
kL) can be transformed term by term to the w equation (expressed in the
dependent variables k and w = k3/2/(kL)). The transformation reads

dw 3KY?dk  K? d(kL) 1)
dt — 2(kL)dt (kL)? dt

The last term is used to transform the Sir, 175 term (see Eq. 6) which gives

k)3/2

Sw,Hb = — (kL) UtS ‘U”| L2

= T hS |U"| Lo S|U"|L  (12)

The second velocity gradient, §%u/0y?, appears in the definition of the
von Karman length scale, and it is given in Eq. 9 in boundary layer form.
S and U" in Eq. 12 correspond to one form of first and second velocity
gradients in three-dimensional flow. Using S and U” in Eq. 9 and inserting
it in Eq. 12 gives

L

"] 2
L= (kS
C LUK,3D

Surro = Co /<;S2|

kS
S (13)
LvK,3D = FBW

When transforming the k¥ — kL equation a term involving derivatives of
w appears. To preserve the SST model in the URANS region, a term with
derivatives of 0k/0x; is also included. The final form of the additional term
in the w equation reads (Menter and Egorov, 2005)

Sw = Fsasmax (T — T5,0)

Ty = (k52
1= 62 Lyk 3D
T 2k ma. 1 Ow Ow 1 0k Ok (14)
= — x| —— —
2 (o) w2 8.’1,‘]' 8561" k2 8.’13]' al'j
k1/2
L=
wc,l/4

2.4 Evaluation of the von Karméan length scale in fully de-
veloped channel flow

In Fig. 2 the turbulent length scale, (L,k 3p), is evaluated using DNS data of
fully developed channel low. When using DNS data only viscous dissipation
of resolved turbulence affects the equations. This implies that the smallest
scales that can be resolved are related to the grid scale. The von Karman
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Figure 2: Turbulent length scales in fully developed channel flow. Left:

global view; right: zoom. DNS. 962 mesh. Re, = 500. Ax/§ = 0.065,

Az/§ = 0.016, y-stretching of 9%. — : (Lyk3p); ---: Lykip; - - - :
(AzAyAz)/3; 00 Ay.
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Figure 3: Turbulent length scales in fully developed channel flow. Hybrid
LES-RANS. Left: global view; right: zoom. 32 x 64 x 32 mesh. Re, = 2000.
Az/é = 0.39, Az/d = 0.19, y-stretching of 17%. — :

(Lok3p); ---:
Lokip; - - (DzAyA2)'/3; 00 Ay; +: ey = K05 /(c)/*w).

length scale based on instantaneous velocities, (Lyx,3p), is presented in the
Fig. 2. For y > 0.2, its magnitude is close to Ay which confirms that the
von Kérman length scale is related to the smallest resolvable scales. Closer
to the wall, (L,x 3p) increases slightly whereas Ay continues to decrease.
The von Karman length scale, L,x,1p, based on the averaged velocity
profile (@) = (@)(y) is also included in Fig. 2, and as can be seen it is much
larger than (Lyk3p). Near the wall L,k 1p increases because the time-
average second derivative, 8%(i)/0y?, goes to zero as the wall is approached.



No such behavior is seen for the three-dimensional formulation, (L, x 3p)-

In Fig. 3, data from hybrid LES-RANS are used (taken from Davidson
and Billson (2006)). When using hybrid LES-RANS, part of the turbulence
is resolved and part of the turbulence is modelled. The resolved turbulence
is dissipated by a modelled dissipation, —2(v75;;5;;) (v denotes SGS or
RANS turbulent viscosity), and vp > v. As a result, the length scale of
the smallest resolved turbulence is larger in hybrid LES-RANS than in DNS.
Close to the wall in the URANS region (y < 0.0316), the resolved turbulence
is dampened by the high turbulent viscosity, and as a results (L,x 3p) follows
closely L,k 1p-

The RANS turbulent length scale, #;_,, from a 1D RANS simulation
at Re; = 2000 with the SST model is also included in Fig. 3. In the
inner region (y < 0.59), its behavior is close to that of the von Kdrmén
length scale, L,k 1p. In the center region the RANS turbulent length scale
continues to increase whereas the von Kdrmén length scale, L,k 1p, goes to
7Z€ero.

Two filter scales are included in Figs. 2 and 3. In the DNS-simulations,
Ay < (AzAyAz)'/3 near the wall, whereas far from the wall Ay > (AzAyAz)'/3
because of the stretching in the y direction and because of small Az and Az.
In the hybrid simulations, it can be noted that the three-dimensional filter
width is approximately twice as large as the three-dimensional formulation
of the von Kérmén length scale, i.e. (AzAyA2)'/? > (Lyk3p)-

3 The Numerical Method

An incompressible, finite volume code with a non-staggered grid arrange-
ment is used (Davidson and Peng, 2003). For space discretization, cen-
tral differencing is used for all terms. The Crank-Nicholson scheme is used
for time discretization of all equations. The numerical procedure is based
on an implicit, fractional step technique with a multigrid pressure Poisson
solver (Emvin, 1997).

4 Inlet Conditions

Inlet fluctuating velocity fields (u/,v',w') are at each time step created at
the inlet y — z plane using synthetic isotropic fluctuations (Billson, 2004).
However, they are independent of each other, and thus their time correla-
tion will be zero. This is unphysical. To create correlation in time, new
fluctuating velocity fields U’, V', W' are computed as (Billson, 2004; Billson
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et al., 2003)
W)™ = aU'y™ "t + bl )™
(Vl)m — a(Vl)mfl + b(’l}l m (15)
(Wl)m — a(Wl)m—l + b(wl)m

where m denotes time step number, a = exp(—At/7T) and b = (1 — a?)%5.
The time correlation of U] will be equal to exp(—At/T), where T is pro-
portional to the turbulent time scale. The inlet boundary conditions are
prescribed as

w(0,y,2,t) = Uin(y) + uj, (y, 2, 1)
(0,9, 2,t) = vy, (y, 2, 1) (16)
U_J(O, Y,z, t) = wén(ya 2, t)

The mean inlet velocity, U;,(y) is taken from fully developed channel flow
predicted with the SST-URANS model.

5 Results

5.1 Channel Flow

A 256 x 64 x 32 node mesh (z, streamwise; y, wall-normal; z, spanwise) has
been used. The size of the computational domain is Ty, = 100, Ymer = 2
(geometric stretching of 17%) and 2,4, = 6.28, see Fig. 4. This gives a Az™
and AzT of approximately 785 and 393, respectively and y™ < 1 near the
walls, expressed in inner scaling. In outer scaling §/Az ~ 2.5 and 6/Az ~ 5.
The time step was set to Atu,/§ = 4.91-1073. The Reynolds number is
Re; = u;0/v = 2000. Neumann boundary conditions are prescribed at the
outlet.

Below the results using the standard SST-URANS model and the SST-
SAS model are presented. In Fig 5 the velocity profiles are shown and the
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Figure 5: Velocity profiles. — : /6 =3.33;---: /6 =23;-.-: z/§ = 97;
+: 2.5In(y ") + 5.2; vv: from a 1D simulation with the SST model.

0 0.2 0.4 0.6 0.8 1

y/é
(a) SST-SAS. (b) SST-URANS.
Figure 6: Streamwise resolved normal stresses. — : z/d = 3.33; - - -:
z/d=23;-.-:x/§=09T.

results obtained with the two models are very similar. Figures 6 and 7 show
the predicted resolved Reynolds stresses. As can be seen, the stresses pre-
dicted with the SAS model decay at a slower rate than those predicted with
the SST-URANS model. The reason is that the turbulent viscosity is smaller
with the SST-SAS model than with the SST-URANS model, which makes
the dissipation of the resolved fluctuations smaller with the former model.
It can be noted that at the end of the channel (z/6 = 97), the turbulent
viscosity with the SST-URANS model is equal to the turbulent viscosity
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Figure 7: Resolved shear stresses. — : /0 =3.33; ---: z/§d = 23; - . - :
x/d =97.

300 : : : — 300 o

250 7 1 250 T ‘

200} v ] 200} P

2 Ve v e
~ v, Sl .
= 150} v e 150/ <
= bl v/
b4 »
1000 v 1 100
s
7)7,—" R
sof g T 50(
0 02 04 06 08 1 0 02 04 06 08
y/o y/o
(a) SST-SAS. (b) SST-URANS

Figure 8: Turbulent viscosity,. — : z/d = 3.33; ---: z/d = 23; - . - :

x/6 = 97; v7: from a 1D simulation with the SST model.

predicted in a 1D channel using the SST-URANS model (see Fig. 8b) and
that the resolved stresses are zero. Hence the flow has returned to fully
steady conditions.

Figure 9a presents the ratio of the turbulent and von Kirmdan length
scales. As expected, the von Karman is largest near the inlet where the
resolved fluctuations are largest. Near the inlet the von Karméan length
scale is more than twice as large as the turbulent length scale, L. When
the resolved stresses far downstream become very small (i.e the flow goes

10
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Figure 10: Decay of resolved stresses. — : (u'v')/uz ;5 -~ -+ (W'u')/uf ;;
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towards a steady solution), the ratio near the centerline increases since the
von Karman length scale for steady flow is small in this region, cf. Fig. 3a.
The ratio of the production term, P,, and the SAS term, S, in the w
equation is presented in Fig. 9b. Near the inlet the SAS term is large, more
than three times P,, and further downstream it decreases as the resolved
fluctuations are dampened.
Figure 10 presents the maximum of the resolved stresses vs. z. Here it is

11
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Figure 12: SAS model. Decay of resolved stresses. Two different options for
computing the second velocity derivatives, see Section 2.2. — : (u'v')/ ug,w;
s (@) o (') fud,

again illustrated that the resolved stresses are dampened much faster with
the SST-URANS model than with the SST-SAS model.

The friction velocities are presented in Fig. 11. In the developing un-
steady region the friction velocity differs from its steady-state value of 1, and
as the resolved fluctuations are dampened further downstream the friction
velocity approaches towards one.

Figure 12 presents the maximum of the resolved stresses vs. z. Option I
and II for computing the second velocity derivatives in U"” (see Section 2.2)

12
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Figure 13: Configuration of ventilated room. L = 3H, h;,/H = 0.056,
hout/H = 0.16. Width of room, inlet and outlet is Z,q, = H.

are compared. Option IT uses only every second node, and hence U” becomes
smaller (S, larger) than with Option I. Hence the turbulent viscosity is
smaller with Option I compared with Option II and this is what makes the
resolved stresses larger with Option I than with Option 11, see Figure 12.

5.2 Ventilated Room

The flow in a ventilated room has been computed, see Fig. 13. Time averaged
inlet profiles of U, k and w are taken from 1D RANS simulation of channel
flow. Synthetic fluctuations are superimposed as described in Section 4.
Wall functions based on the log-law are used if y* > 11; otherwise the linear
law is used. The former boundary condition is implemented by prescribing a
turbulent viscosity at the wall (Davidson and Farhanieh, 1995). The distance
from the wall-adjacent nodes to the wall vary between 5 and 30 (wall units).
Equi-distant mesh has been used in the spanwise direction. The flow in
the room is simulated using the SST-SAS and the SST-URANS model. The
SST-URANS model gives virtually identical results as the steady SST model
with steady inlet boundary conditions. All results presented below have been
averaged (denoted by (-)) in time and spanwise direction over 0.2H < z <
0.8H.

The velocity profiles are compared with experiments in Figs. 14 and 15.
In the wall-jet region both models give good agreement with experiments
(the SST-URANS slightly better). In the recirculation region, however, the
SST-URANS yields a much too strong back-flow, whereas the flow predicted
with the SST-SAS model agrees well with experiments.

Figures 16 and 17 present the streamwise normal stresses, both resolved
and modelled. The SST-SAS model yields resolved fluctuations which are
of the same magnitude as the modelled ones and that are larger than the
modelled fluctuations in the stagnant region in the middle part of the room.

13
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Figure 14: Velocity profiles. x = H. Markers: experiments.
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Figure 15: Velocity profiles. z = 2H. Markers: experiments.

The SST-URANS model on the other hand yields resolved fluctuations which
are close to zero everywhere. Figure 18 compares the additional production
term S, — i.e the SAS term — in the w with the usual production term P,.
S, is at its largest in the region below the wall jet where it is comparable
to P,. The larger the SAS term, the larger w, which decreases the modelled
turbulent kinetic energy, k, and the turbulent viscosity, 14. Figures 19 and
20 show that in the wall jet the turbulent viscosities predicted with the two
models are fairly similar, but in the middle of the room — where the SAS
term is large — the turbulent viscosity predicted with the SAS-SST model is
much smaller than that predicted with the SST-URANS model.

14
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Figure 17: — : resolved turbulent stress (u'u')/Uj, ;3 - --: modelled

turbulent stress 2k/(3U7, - © = 2H.

]

The shear stresses at * = H and z = 2H are shown in Figs. 21 and 22. In
the wall region the modelled shear stresses predicted with the two models are
similar, because the velocity profiles and the turbulent viscosities predicted
with the two models are similar. The modelled shear stress obtained in
the middle of the room with the SST-URANS model is larger than that
obtained with the SST-SAS model because of the larger turbulent viscosity
in the former case. The resolved shear stress predicted with the SST-URANS

15



0 05 1 15 2 25 sl
x/H
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Figure 19: Turbulent viscosity v;/v.

model is close to zero everywhere. The resolved shear stress obtained with
the SST-SAS model is larger than the modelled one on the stagnant region
in the middle of the room.

6 Conclusions

The SST-SAS model has been compared with the standard SST-URANS
model in channel flow and ventilated room flow. Unsteady, turbulent inlet
boundary conditions are prescribed in both cases. It has been confirmed that
the SAS term acts as expected: it reduces the turbulent viscosity compared
to the SST-URANS model and the resolved fluctuations are much larger
with the SST-SAS model than with the SST-URANS model.
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Figure 21: Shear stresses. — : resolved; - - - : modelled. x = H.

The grid used in the channel flow simulations is very coarse (6/Az =
2.5 and §/Az = 5, where § denotes half-channel width). Hence, resolved
turbulent fluctuations can not be sustained with any of the models. The
damping of resolved turbulence by the coarse grid and the relatively large
turbulent viscosities is too large. The prescribed turbulent fluctuations in
the channel flow decay at a much slower rate with the SAS-SST model than

with the SAS-URANS model.

The flow in the ventilated room is in better agreement with the exper-
iments when using the SST-SAS model than when using the SST-URANS
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Figure 22: Shear stresses. — : resolved; - - - : modelled. x = H.

model, especially in the stagnant region in the middle of the room. Here
the turbulent transport of momentum due to resolved fluctuations is larger
than that due to modelled fluctuations. The resolved fluctuations predicted
with the SST-URANS model are close to zero everywhere.

The SAS term is expressed as the ratio of the von Kdrman length scale,
Ly, 3p, and the usual RANS turbulent length scale c,]l/ 1g1/2 Jw. The von
Karman length scale is evaluated using data from a DNS simulation and from
a hybrid LES-RANS simulation. It is found that when using the DNS data
the von Karman length scale expressed in instantaneous velocity gradients
closely follows the smallest grid spacing, i.e. the wall-normal spacing, Ay.
When using the hybrid LES-RANS data the von Kdrman length scale in the
wall region (i.e. the URANS region) is slightly larger than Ay because of
rather larger turbulent viscosities which makes the smallest, resolved scales
larger.

The concept of using the von Kdrman turbulent length scale for detecting
unsteadiness is very interesting. This idea should be pursued further and
could be used in connection with other models. In the SST-SAS model the
von Kdrman length scale is used to trigger an additional source term. As
an alternative it could probably also be used for changing the value of a
coefficient in a transport turbulence model.
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