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Nominal Direction and Direction Spread
Estimation for Slightly Distributed Scatterers

using the SAGE Algorithm
Xuefeng Yin∗, Bernard H. Fleury∗

∗Information and Signals Division, Department of Communication Technology,
Aalborg University, DK-9220 Aalborg, Denmark

Phone + 45 96 35 86 72, Fax: + 45 98 15 15 83, E-mail: xuefeng@kom.auc.dk

Abstract— In this paper, the SAGE (Subspace-
Alternating Generalized Expectation-maximization) al-
gorithm [1] [2] is derived using the generalized array
manifold (GAM) model proposed in [3] (GAM-SAGE)
to estimate the nominal directions, i.e. azimuths and
elevations of slightly distributed scatterers (SDSs). As
byproducts estimates of the azimuth spreads (ASs), eleva-
tion spreads (ESs), and the azimuth-elevation correlation
coefficients (AECCs) of the SDSs can be computed from
the estimates of the GAM parameters. These parameters
determine with close accuracy the direction spreads [4]
of SDSs.

Simulation studies show that in a single-SDS scenario,
the GAM-SAGE algorithm outperforms the Spread-
ESPRIT technique, and both of them outperform the
SAGE algorithm derived with the conventional specular-
scatterer (SS) model (SS-SAGE) when the output signal-
to-noise ratio (SNR) is beyond a certain threshold which
depends on the AS and ES of the SDS. In a two-SDS
scenario with strong power unbalance between the SDSs,
provided the direction spacing between the SDSs equals
twice the intrinsic azimuth or elevation resolution of
the array, the GAM-SAGE algorithm can estimate the
nominal direction of the SDS with weakest power with
tolerably small errors. The SS-SAGE algorithm returns
high root mean squared estimation error (RMSEE) re-
gardless of the direction separation.

We also found that the AECC estimator needs to
operate in high SNR in order for its bias and RMSEE
to be tolerably small. The performance of the AECC
estimator, as well as the AS and ES estimators can be
improved by applying an array-size selection technique
proposed in [5].

I. I NTRODUCTION

Conventional direction, i.e. azimuth and elevation,
of arrival (DoA) estimators are derived based on the
specular-scatterer (SS) model which assumes point
scattering in the propagation environment. In a scenario
where a scatterer has a certain geometrical extent that is
small in the view of the receiver (Rx) or local scattering
around a transmitter (Tx) located far away from the Rx
occurs, the contribution to the received signal can be
conceived as the sum of the contributions of multiple
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sub-scatterers with slightly different DoAs [3] [6] [4].
We refer to such scatterers or clusters of local scatterers
as slightly distributed scatterers (SDSs).

It has been shown in [7] that, in propagation en-
vironments with SDSs the DoA estimators derived
based on the SS model generate estimation errors with
a heavy-tailed probability distribution function. This
indicates that large estimation errors might happen
with high probability. As alternatives, estimators based
on approximation models characterizing the signal
contribution of SDSs have been proposed. One of the
models is the generalized array manifold (GAM) model
[3]. In the same reference, three estimators for the
nominal DoA (NDoA) of SDSs have been derived
based on subspace-based techniques. Application of
these methods requires a common prerequisite, i.e.
the propagation environment has to be time-invariant.
Another approximation model is the two-ray model
proposed in [6]. In this reference, the Spread-F tech-
nique is reported, which can estimate the NDoAs and
angular spreads of SDSs using uniform linear arrays
(ULAs) in time-variant environments.

In this paper we derive the SAGE algorithm based
on a deterministic version of the GAM model (GAM-
SAGE) for estimation of the nominal DoAs, i.e.
nominal azimuths and elevations of arrival (NAoAs,
NEoAs) of multiple SDSs. The term “deterministic”
emphasizes that the (unknown) parameters of the un-
derlying signal model are assumed to be deterministic.
The algorithm is derived with the assumptions that
the propagation environment is time-variant and the
transmitted signal is known to the Rx. The used arrays
can have arbitrary layouts and characteristics. The
algorithm can be applied with slight modifications
in time-invariant environments when the transmitted
signal is unknown. As byproducts estimates of the
azimuth spreads (ASs), elevation spreads (ESs) and
azimuth-elevation correlation coefficients (AECCs) of
the SDSs can be computed from the estimates of the
parameters in the GAM model. These three parameters
exactly characterize with close accuracy the direction
spread (DS) [4] of the SDS. Application of the pro-



posed GAM-SAGE algorithm for estimation of nom-
inal direction of departure and direction of departure
spread is straightforward. Furthermore, when multiple-
input multiple-output (MIMO) systems or techniques
are considered, the algorithm can be extended to in-
clude the nominal directions and direction spreads of
the SDSs at both Tx and Rx sites.

The organization of the paper is as follows. Sec-
tion II and III describe respectively the signal model
and the proposed estimators. Section IV reports the
simulation results. Finally concluding remarks are ad-
dressed in Section V.

II. SIGNAL MODEL

In a propagation scenario with a single SDS the
output signal of aM -element Rx array can be viewed
as composed of the contributions of multiple sub-
scatterers:

Y (t)=
[ L

Σ
ℓ=1

aℓ(t)c(Ωℓ)
]
·s(t)+W (t), t= t1,. . . ,tN . (1)

The components of theM -dimensional (M -D) com-
plex vectorY (t) denote theM output signals of the Rx
array at timet, s(t) denotes the complex envelope of
the transmitted signal, and the noise vectorW (t) is a
spatially and temporally whiteM -D Gaussian process
with component varianceσ2

w. We assume that totally
N observation samples are collected at time instances
tn, n = 1, . . . , N . Moreover in (1)ℓ denotes the index
of the sub-scatterers with total number ofL, while
aℓ(t) andΩℓ represent respectively, the complex gain
and the DoA of the propagation path via theℓth sub-
scatterer. Finally,c(Ω) = [c1(Ω), . . . , cM (Ω)]T with
[·]T denoting transposition, is the response of the array.
The directionΩ (= e(φ, θ)) is a unit vector uniquely
determined by its spherical coordinates(φ, θ), where
φ ∈ [−π,+π) and θ ∈ [0, π] denote respectively, the
azimuth and the elevation. We assumes(t) is known
to the Rx. Without loss of generalitys(t)=1.

A scatterer is called a SDS ifφℓ = φ̄ + φ̃ℓ and
θℓ = θ̄ + θ̃ℓ with φ̃ℓ and θ̃ℓ being small deviations
from the NAoA φ̄ and the NEoAθ̄ respectively of the
SDS. In this case,c(Ωℓ) in (1) can be approximated
by its first-order Taylor series expansion at the NDoA
Ω̄ = e(φ̄, θ̄). Inserting the Taylor approximation for
eachc(Ωℓ) in (1) yields the GAM model [3]

Y (t)=
L

Σ
ℓ=1

aℓ(t)[c(Ω̄)+φ̃ℓc
′

φ(Ω̄)+θ̃ℓc
′

θ(Ω̄)]+W (t),

=α(t)c(Ω̄)+βφ(t)c
′

φ(Ω̄)+βθ(t)c
′

θ(Ω̄)+W (t), (2)

where c
′

φ(Ω) = 1
sin(θ) ·

∂c(Ω)
∂φ

, c
′

θ(Ω)= ∂c(Ω)
∂θ

, α(t)
.
=

L

Σ
ℓ=1

aℓ(t), βφ(t)
.
=

L

Σ
ℓ=1

aℓ(t)φ̃ℓ and βθ(t)
.
=

L

Σ
ℓ=1

aℓ(t)θ̃ℓ.
Using matrix notation, (2) can be written as

Y (t) = F (Ω̄)ξ(t) + W (t)

with F (Ω̄) = [c(Ω̄), c
′

φ(Ω̄), c
′

θ(Ω̄)] and ξ(t) =

[α(t), βφ(t), βθ(t)]
T.

We make the following assumptions regarding the
random elements characterizing the SDS.

• The azimuth deviations̃φ1, . . . , φ̃L are zero-mean
uncorrelated random variables and have identical
varianceσ2

φ̃
. The elevation deviations̃θ1, . . . , θ̃L

are also zero-mean uncorrelated random vari-
ables and have identical varianceσ2

θ̃
. Moreover

E[θ̃ℓφ̃ℓ′ ] = ρφθσφ̃σθ̃δℓℓ′ with E[·], ρφθ and δ
denoting respectively the expectation operator, the
correlation coefficient betweeñθℓ andφ̃ℓ, and the
Kronecker delta function.

• The gain processesa1(t), . . . , aL(t) are uncor-
related complex zero-mean circularly-symmetric
wide-sense stationary (WSS) processes with au-
tocorrelation functionRaℓ

(τ). In addition these
gain processes have equal power, i.e.Ra1

(0) =
. . . = RaL

(0).

Under the above assumptions the standard deviations
σφ̃ andσθ̃ are equal to the AS and the ES respectively
of the SDS. Practically, a scatterer is called SDS
when its AS and ES are smaller than10◦. Moreover
the AS, ES and AECCρφθ determine with close
accuracy the DS [4] of the SDS. In addition,α(t),
βφ(t) and βθ(t) are complex circularly-symmetric
zero-mean WSS processes with autocorrelation func-

tions Rα(τ) =
L

Σ
ℓ=1

Raℓ
(τ), Rβφ

(τ) = σ2
φ̃
Rα(τ) and

Rβθ
(τ) = σ2

θ̃
Rα(τ) respectively, and cross-correlation

functions Rαβθ
(τ) = Rαβφ

(τ) = 0, and Rβφβθ
(τ) =

σφ̃σθ̃ρφθRα(τ) respectively. The parametersσ2
φ̃
, σ2

θ̃
,

andρφθ can be calculated from the above identities to
be

σ2
φ̃

=
σ2

βφ

σ2
α

, σ2
θ̃

=
σ2

βθ

σ2
α

, and ρφθ =
Rβφβθ

(0)

σ
φ̃

σ
θ̃
σ2

α
, (3)

whereσ2
(·) = R(·)(0). In the paper we consider a time-

variant environment and assume thatRα(|tn′ − tn|) =
0, n 6= n′, n, n′ = 1, . . . , N , or equivalently that,α(t),
βφ(t) andβθ(t) are white random sequences.

In a scenario withD SDSs, (2) can be extended to

Y (t) =
D

Σ
d=1

αd(t)c(Ω̄d) + βφ,d(t)c
′

φ(Ω̄d)

+βθ,d(t)c
′

θ(Ω̄d) + W (t), t = t1, . . . , tN , (4)

where d denotes the indexing variable for the SDSs
and Ω̄d = e(φ̄d, θ̄d).

III. T HE SAGE ALGORITHM AND THE DS
ESTIMATOR

In a multi-SDS scenario as depicted by (4), the
unknown parameter vector is

θ
.
= [σ2

w, φ̄d, θ̄d, αd(t), βφ,d(t), βθ,d(t);

d = 1, . . . ,D, t = t1, . . . , tN ].

We choose the subsets of parameters updated in
the iterations of the SAGE algorithm to be the



sets including the parameters characterizing the sig-
nals contributed by the individual SDSs and the
unknown noise variance. Hence, at Iterationi =
1, 2, . . . , θd

.
= [σ2

w, φ̄d, θ̄d, αd(t), βφ,d(t), βθ,d(t), t =
t1, . . . , tN ] with d = [(i − 1) mod D] + 1 is updated.
The admissible hidden-data [8] associated withθd

reads

Xd(t) = αd(t)c(Ω̄d) + βφ,d(t)c
′

φ(Ω̄d)

+βθ,d(t)c
′

θ(Ω̄d) + W (t), t = t1, . . . , tN . (5)

At Iteration i of the SAGE algorithm the objective
function

Q(θd|θ̂
[i−1]

)
.
= E

[
Λ(θd;Xd)|Y (t) = y(t), θ̂

[i−1]
)
]

is computed in the expectation (E-) step. In the above

expression̂θ
[i−1]

denotes the estimate ofθ at the(i−
1)th iteration. It can be shown that

Q(θd|θ̂
[i−1]

) = −MN lnσ2
w

− 1
σ2

w

tN

Σ
t=t1

‖x̂
[i−1]
d (t) − F (Ω̄d)ξd(t)‖

2, (6)

where

x̂
[i−1]
d (t)=y(t)−

D

Σ
d′=1,d′ 6=d

F ( ˆ̄
Ω

[i−1]
d′ )ξ̂

[i−1]

d′ (t),

t = t1, . . . , tN (7)

is an estimate ofXd(t) given y(t) and assumingθ =

θ̂
[i−1]

.
In the maximization (M-) step of theith iteration

θ̂
[i]

d = arg max
θd

{Q(θd|θ̂
[i−1]

)} is computed. Using

a separable solution proposed in [9] the multiple-
dimensional maximization operation reduces to a two-
dimensional maximization problem

( ˆ̄φ
[i]
d , ˆ̄θ

[i]
d ) = arg max

(φ̄d,θ̄d)
{tr[ΠF (Ω̄d)Σ̂x

[i−1]
d

x
[i−1]
d

]} (8)

and

ξ̂
[i]

d (t) = F ( ˆ̄
Ω

[i]
d )†x̂

[i−1]
d (t), t = t1, . . . , tN ,

(σ̂2
w)[i] = 1

NM
tr[Π⊥

F ( ˆ̄Ω
[i]
d

)
Σ̂

x
[i−1]
d

x
[i−1]
d

],

where tr[·] denotes the trace operation,ΠF (Ω̄d) =

F (Ω̄d)F (Ω̄d)
† stands for the projection operator

onto the column space ofF (Ω̄d), F (Ω̄d)
† .

=[
F (Ω̄d)

HF (Ω̄d)
]−1

F (Ω̄d)
H with [·]H denoting Her-

mitian transposition, is the pseudo-inverse ofF (Ω̄d),

Σ̂
x

[i−1]
d

x
[i−1]
d

= 1
N

tN

Σ
t=t1

x̂
[i−1]
d (t)

(
x̂

[i−1]
d (t)

)H
, and

ˆ̄
Ω

[i]
d = e( ˆ̄φ

[i]
d , ˆ̄θ

[i]
d ).

In our implementation of the SAGE algorithm, the
two-dimensional maximization in (8) is replaced by a
coordinate-wise updating procedure similar to that used
in [8]:

ˆ̄φ
[i]
d = arg max

φ̄d

{tr[Π
F

(
e(φ̄d, ˆ̄θ

[i−1]
d

)
)Σ̂

x
[i−1]
d

x
[i−1]
d

]},

ˆ̄θ
[i]
d = arg max

θ̄d

{tr[Π
F

(
e(φ̄

[i]
d

,θ̄d)
)Σ̂

x
[i−1]
d

x
[i−1]
d

]}.

This procedure is still consistent with the SAGE frame-
work with the admissible hidden-data given in (5). As
a consequence the resulting iterative scheme exhibits
the monotonicity property [8].

In the initialization step, the initial estimateŝθ
[0]

d ,
d = 1, . . . ,D, are computed by means of a successive
interference cancellation method similar to that used
in [8].

From (3) sensible estimators ofσφ̃d
, σθ̃d

and ρφθ

read

σ̂φ̃d
=

√
σ̂2

βφ,d

/
σ̂2

αd
, (9)

σ̂θ̃d
=

√
σ̂2

βθ,d

/
σ̂2

αd
, (10)

ρ̂φθd
= R̂βφ,dβθ,d

(0)/(σ̂φ̃d
σ̂θ̃d

σ̂2
αd

) (11)

respectively. The parameter̂σ2
αd

, σ̂2
βφ,d

and σ̂2
βθ,d

can
be computed from the estimates ofαd(t), βφ,d(t) and
βθ,d(t), t = t1, . . . , tN returned by the GAM-SAGE
algorithm.

Notice that in a scenario with an unknown transmit-
ted signals(t) the estimators (9)-(11) still apply. In
this case the parametersα(t), βφ(t) and βθ(t) in (2)

need merely to be redefined asα(t)
.
=

L

Σ
ℓ=1

aℓ(t)s(t),

βφ(t)
.
=

L

Σ
ℓ=1

aℓ(t)φ̃ℓs(t) andβθ(t)
.
=

L

Σ
ℓ=1

aℓ(t)θ̃ℓs(t).

IV. SIMULATION STUDIES

The performance of the NDoA estimators using
the GAM-SAGE algorithm is assessed by means of
Monte-Carlo simulations first in a single-SDS scenario
and then in a two-SDS scenario. The environment is
time-variant, andN = 20 observation samples are
considered in each Monte-Carlo run. Totally 200 runs
are collected for calculating the root mean square
estimation error (RMSEE) and the average estimation
error (AEE) of the NDoA, AS, ES and AECC of
the SDS. For comparison purpose the performance
of the SAGE algorithm derived with the SS model
(SS-SAGE) and the Spread-ESPRIT technique [6] is
reported as well.

In the simulations, the Rx is equipped with a uniform
4× 4 planar array consisting of 16 isotropic antennas.
The spacing between adjacent elements is equal to
half a wavelength. Each SDS consists ofL = 50
sub-scatterers. The random elements characterizing the
sub-scatterer contributions to the received signal are
generated in such a way that the model assumptions
described in the two bullet points given in Sect.III hold.
In particular, the AoAs and EoAs of the sub-scatterers
are independent, identically von-Mises distributed ran-
dom variables centered around the SDS NAoA and
NEoA respectively. Moreover the complex gains of
the propagation paths via the sub-scatterers have equal
amplitude.



Notice that the Spread-ESPRIT technique is applica-
ble with ULAs only. Thus, when estimating the NAoAs
of the SDSs the planar array is partitioned into4 linear
(row) sub-arrays. The Spread-ESPRIT technique first
returns4 NAoA estimates using these sub-arrays. The
final estimate is the average of the4 values. The NEoA
estimation is carried out similarly.

In the single-SDS scenario both the NAoA and the
NEoA of the SDS are set equal to110◦. The AS
and the ES are identical and range from0.1◦ to 7◦.
The SNR at the output of the estimators, which we
denote byγo, varies from 0 dB to 30 dB. Fig. 1
depicts the RMSEE of the NAoA versus the output
SNR with zero AECC and AS equal to3◦ and 7◦.
It can be observed that the GAM-SAGE algorithm
outperforms the Spread-ESPRIT technique within the
range γo > 1 dB. Both algorithms perform better
than the SS-SAGE algorithm beyond a certain SNR
threshold which depends on the AS and ES of the SDS
and the estimators. These observations remain valid for
other choice of the AS and the AECC.

0 10 20 30 40 50
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−1
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)

[o
]

GAM-SAGE, σφ̃ = 7o

SS-SAGE, σφ̃ = 7o

Spread-ESPRIT, σφ̃ = 7o

16

GAM-SAGE, σφ̃ = 3o

SS-SAGE, σφ̃ = 3o

Spread-ESPRIT,σφ̃ = 3o

γo [dB]

Fig. 1. RMSEE(φ̄) vs. output SNRγo with σ
φ̃

= 3◦ and7◦.

Investigations [5] of the AS estimator applied with
a ULA show that the AS estimator is biased and
returns large RMSEE regardless of the AS. This bias
results due to the mismatch between the GAM model
and the true signal model. It is also found that by
adaptively selecting the array size for individual SDS,
the approximation accuracy of the GAM model can
be increased [5]. As a consequence, the bias and the
RMSEE of the AS estimator can be reduced. The
reader is referred to [5] for further information on the
adaptive array-size selection technique.

Fig. 2 (a) and (b) depict respectively the AEE and
the RMSEE of the AECC versus its true value with out-
put SNR as a parameter. The AS and ES of the SDS are
identical and equal to1◦. The AECC ranges from0.1
to 0.9. It can be observed that both the absolute AEE
and the RMSEE of AECC decrease when the SNR
increases. Forγo = 30 dB the absolute AEE increases
along with the absolute value of the AECC. These

behaviors of the AEE are consistent with a theoretical
analysis which shows that, in a noisy environment
the AECC estimator returns estimates with absolute
value smaller than the true value, and additionally,
the absolute AEE increases when the absolute AECC
increases, and also when the SNR decreases. Hence, to
estimate AECC with an effective accuracy, high SNRs
are necessary. For example, in Fig. 2 we observed that
with γo = 50 dB, the AEE of AECC is confined within
the range[−0.05, 0.05], i.e. the estimator is nearly
unbiased, and the returned RMSEE is roughly around
0.15. As the accuracy of the AECC estimate depends
on the GAM approximation accuracy in describing the
signal contribution of the SDS, it is conjectured that the
performance of the AECC estimator can be improved
by applying the array-size selection technique [5].
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Fig. 2. AEE(ρφθ), (a) and RMSEE(ρφθ), (b) vs. the true value with the
output SNRγo as a parameter.

In the two-SDS scenario, the SDS of interest (SDS1)
has fixed NAoA and NEoA, both being equal to110◦.
The NEoA of the second SDS (SDS2) equals the NEoA
of SDS1. The NAoA spacing∆φ̄ between SDS1 and
SDS2 ranges from5◦ to 70◦. The two SDSs have
identical AS and ES equal to5◦, and their AECCs are
equal to zero. The output SNRs for SDS1 and SDS2
are 20 dB and29 dB respectively, i.e. we consider a
situation with a strong SDS power unbalance of9 dB.
Fig. 3 (a) and Fig. 3 (b) depict respectively the AEE
and the RMSEE of the NAoĀφ1 for the weaker SDS
(SDS1) versus∆φ̄. Notice that the Spread-ESPRIT
technique is inapplicable in estimating the NDoAs for
two SDSs because of the insufficient number of point
scatterer estimates that can be computed using a 4-
element ULA [6]. The performance of the Spread-
ESPRIT technique in a two-SDS scenario using an
8-element ULA is reported and compared with that
of the SAGE algorithm in [10], to which the reader
is referred for more information. Each element of the
pair of NAoA estimates, say( ˆ̄φ′, ˆ̄φ′′) computed by the
SAGE algorithm is assigned to one of the two SDSs
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according to

( ˆ̄φ1,
ˆ̄φ2) = arg min

(φ′,φ′′)∈

{( ˆ̄φ′, ˆ̄φ′′),( ˆ̄φ′′, ˆ̄φ′)}

‖(φ′, φ′′) − (φ̄1, φ̄2)‖,

where‖ · ‖ is the Euclidean norm.
It can be observed that the SS-SAGE algorithm per-

forms better than the GAM-SAGE algorithm in terms
of lower AEEs and RMSEEs when∆φ̄ < 45◦. When
∆φ̄ ≥ 45◦, the GAM-SAGE algorithm outperforms
the SS-SAGE algorithm, and its RMSEE stabilizes at
2.5◦ when ∆φ̄ ≥ 55◦. The poor performance of the
GAM-SAGE algorithm when the separation is small is
due to the fact that the GAM-SAGE cannot separate
the SDSs when the NAoA spacing is less than a
certain threshold, e.g.55◦ from the simulation results.
Notice that 55◦ equals twice the intrinsic azimuth
resolution of the 4-element ULA [8]. Although the SS-
SAGE algorithm outperforms the GAM-SAGE algo-
rithm at small direction separation, its RMSEE remains
roughly equal to8◦ regardless of the separation. These
observations show that provided the NAoA spacing
equals twice the intrinsic azimuth resolution of the
array, the GAM-SAGE algorithm returns the RMSEE
within a tolerably low level in estimating weaker SDSs.
Moreover provided the above condition occurs, the
GAM-SAGE algorithm in estimating the NAoA of the
weaker SDS is more robust towards the impact of the
stronger SDS than the SS-SAGE algorithm.

V. CONCLUSIONS

In this paper, the SAGE (Subspace-Alternating Gen-
eralized Expectation-maximization) algorithm [1] [2]
is derived based on a deterministic version of the
generalized array manifold (GAM) model proposed in
[3] to estimate the nominal directions, i.e. azimuths
and elevations of slightly distributed scatterers (SDSs)
in time-variant environments. As byproducts estimates
of the azimuth spreads (ASs), elevation spread (ESs),
as well as azimuth-elevation correlation coefficients
(AECCs) of the SDSs can be computed from the
estimates of the GAM parameters.

Simulation studies show that in a single-SDS sce-
nario, the GAM-SAGE algorithm outperforms the
Spread-ESPRIT technique [6], and both of them out-
perform the SAGE algorithm derived with the conven-
tional specular-scatterer (SS) model (SS-SAGE) when
the output SNR is beyond a certain threshold, which
depends on the AS and ES of the SDS.

In the two-SDS scenario with strong power unbal-
ance between the SDSs, the direction separation of
these SDSs needs to be at least larger than twice the
intrinsic resolution of the used array in order for the
GAM-SAGE estimator to return direction estimates
with a tolerable accuracy. The SS-SAGE is more robust
towards bias for low direction separation but performs
poor in terms of root mean squared estimation error
(RMSEE).

The AS and ES estimators are found to be biased
and return large estimation errors. Their performance
can be improved by applying an array-size selection
technique proposed in [5]. The AECC estimator is
found to be biased in noisy environments. The output
SNR needs to be50 dB for this estimator to be
nearly unbiased and exhibit tolerably small RMSEE.
It is conjectured that the performance of the AECC
estimator can be improved by applying the array-size
selection technique [5].

The proposed estimators can be applied with arbi-
trary arrays. They can also be used in time-invariant
environments with only a slight modification. Their ex-
tension to include the nominal directions and direction
spreads of the SDSs at both Tx and Rx sites in a MIMO
system is straightforward.
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