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Numerical methods for optimizing the performance of buildings 

Frank Pedersen, Researcher, 
Danish Building Research Institute, Dr. Neergaards Vej 15, DK-2970 Hørsholm, Denmark; 
frp@sbi.dk, www.sbi.dk 
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SUMMARY: 
The many different parties that influence design and control decisions for buildings, such as building owners, 
users, architects, consulting engineers, contractors, etc, may have different and to some extent contradicting 
requirements to buildings. Furthermore, national building regulations specify requirements to (among others) 
the energy performance and quality of the indoor climate, which also must be satisfied. This paper describes 
numerical methods intended for estimating design decisions that satisfy the given requirements, and that at the 
same time are optimal in some sense, for instance with respect to the economy, energy performance, or indoor 
climate. This is addressed by combining building simulation methods with numerical optimization methods. The 
paper describes a problem formulation that represents optimal design decisions, and the numerical simulation 
and optimization methods used for solving the problem. The paper furthermore provides a case study regarding 
a small office building. 

1. Introduction 
The parties who influence design and control decisions for buildings (referred to as decision makers), such as 
building owners, users, architects, consulting engineers, contractors, etc., often have different and to some extent 
conflicting requirements to buildings. For instance, the building owner may be more concerned about the budget 
for the building, rather than the indoor climate, which is more likely to be a concern of the building user. 

Furthermore, it is a well-established fact that it is easier and less costly to make design changes in the early 
stages of the design process for buildings rather than later. See for instance Poel (2005) and Nielsen (2003) for a 
more detailed description and discussion of the design process for buildings. Decision-makers may therefore 
benefit from software-based building optimization methods, developed for the early stages of the design process. 

Simulation and optimization methods have been combined in many different ways for supporting building-
related decisions. For instance, the studies by Peippo et al. (1999), Bouchlaghem et al. (2000) and Wright et al. 
(2002) all use this approach for estimating efficient design decisions related to, among others, the shape and 
orientation of the building, the amount of insulation, and the shape and area of the windows. The problem 
formulations used in the studies are single- or multi-criteria optimization problems, involving either energy 
performance, construction or operational costs, or measures for thermal discomfort. 

In general, there are many combinations of decision variables and performance calculations that are relevant to 
include in the problem formulation. This motivates the development of building optimization methods that give 
the end-user full control over the problem formulation. 

Furthermore, the numerical optimization methods must address the following issues: (1) partial derivatives of the 
functions can not be expected to be available, and (2) the optimization method must provide valid input to the 
simulation methods; otherwise they may not provide valid output. 

The purpose of this paper is to describe a combination of numerical simulation and optimization methods that 
can be used for estimating efficient design decisions at the early stages of the design process for buildings. The 
problem formulation and the involved numerical methods are described. The paper furthermore provides a case 
study involving a small office building. 

This paper is based on the thesis by Pedersen (2006), where further details can be found. 
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2. General aspects of the method 
Decision-making is supported by calculating optimal design decisions for a conceptual building model. The 
problem formulation, the model and the elements included in the problem formulation are described in the 
following. 

2.1 Problem formulation 
Figure 1 shows an illustration of the elements involved in decision-making. The figure illustrates the simple fact 
that decisions made under given circumstances result in a number of consequences. The figure furthermore 
illustrates the requirements made by decision-makers to the decisions as well as to the resulting consequences. 

 
FIG. 1: Elements involved in decision-making. 

The term decision refers to the aspects of the building that decision-maker has control over, and circumstances 
refers to the aspects that the decision-maker has no control over, or do not wish to control. 

Decisions are represented by a set of decision variables nx∈ , and the circumstances are represented by a set 
constant parameters yny∈ . The consequences are represented by a set of utility functions : y qn nq D× → , 
that depend on x  and y . The consequences of a set of decisions x  made under the circumstances y  can 
therefore be evaluated by calculating the function values ( , )q x y . 

The domain nD ⊆  for the utility functions is defined in the following way: 

 { }: ( ) 0nD x d x= ∈ ≥ , (1) 

where the functions : Dnnd →  are referred to as domain constraint functions. 

The following optimization problem is used for estimating efficient decisions: 
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(2) 

This formulation allow the user to specify which utility function to minimize or maximize, as well as linear 
inequality and equality relations, involving decision variables and utility functions. The user can thus choose 
between, for instance, energy optimal or economical optimal design decisions. The inequality constraints can be 
used for specifying upper and lower bounds on utility functions and decision variables. The equality constraints 
can be used for specifying required values for utility functions and decision variables. 

2.2 A conceptual building model 
The required utility functions are based on performance calculations for a building with a simple geometry, 
representing general features, such as volume, surface area, mass of constructions, window area, etc. This so-
called conceptual building model is shown in Figure 2. 

All floors are identical, and each floor has window “bands” on two of the four external walls. The staircase tower 
is omitted, and only a single internal wall is included, which divide the building into two thermal zones. The 
performance of each of the two thermal zones is calculated separately. 
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FIG. 2: Left: Layout of the conceptual building. Right: The cross-section A-A. 

2.3 Decision elements 
The following decision variables are included in the problem formulation: 

� The shape of the building (represented by the width to length ration and the number of floors) 

� The window fraction of the façade areas 

� Discrete selections of windows from a product database 

� Amount of insulation used in ground slab, roof construction and external walls 

The following main groups of utility functions are included in the problem formulation: 
� The energy performance (energy for heating, cooling, ventilating, producing DHW, U-values for 

constructions, among others) 

� The indoor environment (overheating and daylight utilization) 

� Economy (construction and operational costs) 

3. Utility functions 
The utility functions involved in the problem formulation are described in the following, as well as the domain 
constraint functions, that specify the domain of the utility functions. 

3.1 Energy and indoor climate 
The performance with respect to energy and indoor climate is calculated using the method described by Nielsen 
(2005). One simulation is conducted for each of the two thermal zones of the building. The method gives, among 
others, hourly values for the internal air temperature, and hourly values for energy required for heating, cooling 
and ventilating the building. 

These results are used for calculating the utility functions related to the energy performance of the building. The 
internal air temperatures are furthermore used for calculating the annual number of hours, where overheating 
occurs, which is used as a measure for thermal discomfort. The ratio between the depth of the room and the 
window height is used as a (primitive) measure for the level of daylight utilization. The calculation of this 
measure is based on the geometry of the building. Notice that high values represent low daylight utilization, and 
low values represent high daylight utilization. 

3.2 Economy 
Two utility functions are used for representing economical consequences of design decisions: The cost of 
constructing the building, and the annual cost of operating the building. The cost of constructing the building is 
estimated by interpolating values found in price catalogues, such as the V&S price catalogue (2005), which 
concerns unit prices for construction jobs in Denmark. 



                 - 4 - 

Some of the prices only depend on the number of purchased units, where other prices also depend on secondary 
parameters. For instance, the unit price of pouring concrete depends on the amount of concrete, and the required 
strength of the concrete. 

The prices are interpolated using the following three models: 

 1 1 2 3( , ) exp( )p u uβ β β β= +  (3) 

 2 1 2 3 4( , , ) exp( )p u s s uβ β β β β= + +  (4) 

 3 1 2 3 4 5( , , ) exp( ) exp( )p u s s uβ β β β β β= + + , (5) 

where u  is the number of purchased units, β  is a vector of model parameters, and s  is the secondary 
parameter. Note that the length of β  depends on the model. 

The model (3) is used for representing unit prices that do not involve a secondary parameter, and the models (4) 
and (5) are used for representing unit prices involving a secondary parameter. 

The model parameters β  are calculated as a least squares solution to the over-determined system of non-linear 
equations that can be formed using the unit prices from the price catalogue. 

The cost of operating the building is calculated using the annual consumption of electrical energy and energy for 
heating the building, together with the energy prices for electricity and district heating. 

3.3 Domain constraints 
The purpose of the domain constraints is to ensure that the input to the simulation methods is valid. The domain 
constraints ensure (among others) that the input satisfies the following requirements: 

� The width to length ratio of the building is positive 

� The number of floors is larger than or equal to 1 

� The window fraction of the façade area is between 0 and 1 

� The amount of insulation used in the ground slab, roof construction and external walls is positive. 

4. A gradient-free SQP filter algorithm 
The method described in this section is based on the SLP filter method by Fletcher (1998), but with a number of 
modifications, in order to make it suitable for solving (2). First of all, the method must not require gradient 
information of the functions used for defining (2), secondly, it may only evaluate these functions for iterates kx , 
that belong to the domain D . 

The method is intended for finding solutions to constrained optimization problems on the following form: 

 
min ( )

subject to ( ) 0 and ( ) 0,
x D

I E

f x

c x c x
∈

≥ =
 

(6) 

which includes the problem (2). The method needs to distinguish between the following three situations: 
� The current iterate kx  belongs to the domain D  

� The current iterate has provided an unsolvable (or incompatible) subproblem 

� The current iterate does not belong to the domain D . 

In the first situation, the method calculates a step kxΔ  towards a stable point for (6), by forming an 
approximated subproblem QP( , )k kx μ , using first order Taylor expansions of the functions involved in (6). The 
step length is restricted by adding a quadratic damping term kμ  to the objective function. This approach 
provides the following quadratic program: 
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(7) 

The following gradient approximations are used in the definition of (7): 

 , ( )f k kB f x≈ ∇ , , ( )
I Ic k c kB J x≈ , , ( )

E Ec k c kB J x≈  and , ( )d k d kB J x≈ . (8) 

These approximations are initialized using finite difference calculations, and subsequently updated using the 
rank one updating formula described by Broyden (1965). 

In the second situation, where QP( , )k kx μ  is incompatible, the method calculates a step towards the feasible 
region of (6). This is done by calculating a so-called regular restoration step, which is a step in a direction that 
minimizes the maximum violation of the constraints in (6). The step length is restricted by adding a quadratic 
damping term to the objective function. This approach provides the following subproblem: 
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where ( )kv x  is a vector of constraint violations: 
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(10) 

and where , ( )v k v kB J x≈  is an approximation of the gradient of v  at kx . In (9), the parameter z  is introduced in 
order to rearrange the problem into a QP. 

The last situation, where kx D∉ , is handled by calculating a so-called domain restoration step, which is a step 
in a direction that minimizes the maximum violation of the domain constraints, and can be calculated by solving 
the following subproblem: 
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Once a step kxΔ  is calculated by solving either (7), (9) or (11), and the step is accepted, the next iterate 
becomes: 

 1k k kx x x+ = Δ + , (12) 

The damping parameter kμ  is required for solving (7), (9) and (11), and is calculated by relating it to the so-
called trust region radius kρ , which is an upper limit on the step length, such that k kx ρΔ ≤  for all iterations. 
The details of the relations between kμ  and kρ  are quite lengthy, and are therefore omitted. 

The filter concept, described by Fletcher (1998), is used as acceptance criteria. A filter is a set of pairs 
( ){ }( ), ( )i if x h x , i F∈ , that are non-dominating in the Pareto (1969) sense of the word. The function h  is 

defined as: 

 { }{ }( ) max 0, max ( )h x v x= , (13) 
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where ( )v x  is given by (10). In order for a step kxΔ  to be accepted, it must provide a pair 

( ){ }1 1( ), ( )k kf x h x+ + , that is acceptable to the filter, i.e. the pair must not be dominated by any other pair in the 
filter. Furthermore, the iterate must be a so-called h-type iterate. See Fletcher (1998) for details regarding this 
concept. 

 
FIG. 3: Flowchart for the gradient-free SQP filter algorithm. 

The trust region radius is increased if there is a good match between the expected and actual decrease in the 
objective function value, and decreased otherwise. This criterion is evaluated using the so-called gain factor kr , 
given by: 

 ( ) ( )k k kr f x l x= Δ Δ , (14) 
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where ( )kf xΔ  is the decrease in the relevant objective function, and where ( )kl xΔ  is the decrease in the 
corresponding Taylor approximation. The parameter kρ  is updated using the expression 1 ( )k k krρ ρ θ+ = , where 

 ( )( )2 1
3 2( ) tanh 10 1k kr rθ = − +  (15) 

The trust region is reduced with a factor of 3, if the iterate is unacceptable to the filter, if the iterate is not h-type, 
or if the domain constraint violation did not decrease for an iterate kx D∉ . 

Figure 3 shows a flowchart for the algorithm. Details regarding the stopping criteria are omitted. 

5. Case study 
The combination of simulation and optimization method are used for estimating efficient design decisions for a 3 
storey, 2000 m2 office building. The aim is to optimize the building with respect to the energy performance. The 
annual energy consumption is therefore required to be minimal. Table 1 shows the initial and optimal values for 
decision variables and utility functions, as well as the requirements to the solution. The list of decision variables 
and utility functions are only partial, full lists are provided by Pedersen (2006). The omitted utility functions do 
not influence the solution. 

Notice that the optimal energy consumption is higher than the initial one. This is because the initial decisions are 
infeasible, since the requirements to daylight utilization are not satisfied. The building provided by the optimum 
decisions is the one with the lowest annual energy consumption, that at the same time satisfy all requirements. 
Notice also that the optimal construction cost is the one that fully exploits the allowed limits. 
The solution is restricted by the upper limits on the amount of insulation used in the ground slab and roof 
construction, as well as the upper limits on the daylight utilization measure and the construction costs. 

The requirements to the solution can be arranged as entries in the parameters Or , IA , Ib , EA  and Eb , in 
problem (2), which is solved using the gradient-free SQP filter algorithm, in order to calculate the optimum 
decision variables. If the decision-maker wishes to change the requirements, it can be done simply by changing 
these parameters. This feature enables the formulation (2) to be used for optimizing buildings in many different 
ways, for instance with respect to energy, economy or indoor climate. 

TABLE. 1: Initial and optimum values for decision variables and utility functions. 

Decision variable Requirement Initial value Optimum value 

Width to length ratio  []  0.200 0.146 
Number of floors  [] = 3 3.000 3.000 
Window percentage, front []  0.400 0.396 
Window percentage, back []  0.400 0.396 
Insulation, ground slab [m] ≤ 0.5 0.200 0.500 
Insulation, roof  [m] ≤ 0.5 0.200 0.143 
Insulation, external walls [m] ≤ 0.5 0.200 0.500 

Utility function Requirement Initial value Optimum value 

Annual energy use  [kWh] minimal 136392.96 138981.18 
U-value for ground slab [W/m2K] ≤ 0.30 0.18 0.07 
U-value for external walls [W/m2K] ≤ 0.40 0.17 0.22 
U-value for roof  [W/m2K] ≤ 0.25 0.13 0.06 
Daylight utilization, front [] ≤ 4 4.66 4.00 
Daylight utilization, back [] ≤ 4 4.66 4.00 
Construction cost  [DKR] ≤ 107 9318393.71 10000000.00 
Annual operational cost [DKR]  67243.00 69577.85 
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The thermal resistance of the uninsulated parts of the ground slab, roof construction and external walls are 0.42 
m2K/W, 0.68 m2K/W and 2.5 m2K/W, respectively. The internal and external surface resistances are 0.13 
m2K/W and 0.04 m2K/W, respectively. The external surface resistance is only used for the external walls. The 
thermal conductivity of the insulation material is 0.039 W/mK. 

6. Conclusion 
This paper concerns numerical methods for optimizing the performance of buildings, and describes how 
decision-making can be supported at early stages of the design process by combining numerical simulation and 
optimization methods. 

A problem formulation is provided that enables decision-makers to formulate requirements to buildings in a 
highly flexible way. The problem formulation facilitates decision-makers to specify what aspect of the building 
performance to optimize, for instance energy performance, economy or indoor environment. Upper and lower 
bounds on decision variables and utility functions can furthermore be specified. It is believed that the proposed 
problem formulation is useful for developing highly flexible software systems for building-related decision 
support. 

Efficient design decisions are estimated by optimizing decision variables for a conceptual building model. The 
purpose of this model is to represent general features of the building, such as volume, surface area, mass of 
constructions, window areas, etc. 

The details of a gradient-free SQP filter algorithm are described. The method solves constrained optimization 
problems without requiring gradient information, and furthermore ensures that the input given to the simulation 
methods is valid. 

A case study regarding an office building is conducted. The initial building has a low annual energy use, but is 
infeasible, where the optimized building has a higher annual energy use, but is feasible. 

7. References 
Bouchlaghem N. (2000). Optimising the design of building envelopes for thermal performance, Automation in 

Construction, vol. 10, pp. 101-112. 

Broyden C.G. (1965). A class of methods for solving nonlinear simultaneous equations, Mathematics of 
Computation, vol. 19, pp. 577-593. 

Fletcher R., Leyffer S. and Toint P.L. (1998). On the global convergence of an SLP-filter algorithm, Numerical 
Analysis Report NA/183, Department of Mathematics, University of Dundee, Scotland. 

Nielsen T.R. (2003). Optimization of buildings with respect to energy and indoor environment, Ph.D. Thesis 
BYG-DTU R-036 (ISBN 87-7877-094-7), Department of Civil Engineering, Technical University of 
Denmark, DK-2800 Kgs. Lyngby, Denmark. 

Nielsen T.R. (2005). Simple tool to evaluate energy demand and indoor environment in the early stages of 
building design, Solar Energy, vol. 78, no. 1, pp. 73-83. 

Pareto V. (1969). Manual of political economy, Augustus M. Kelley Pubs, New York, USA. 

Pedersen F. (2006), A method for optimizing the performance of buildings, Ph.D. Thesis R-148, Department of 
Civil Engineering, Technical University of Denmark. 

Peippo K., Lund P.D. and Vartiainen E. (1999). Multivariate optimization of design tradeoffs for solar low 
energy buildings, Energy and Buildings, vol. 29, pp. 189-205. 

Poel B. (2005). Integrated design with a focus on energy aspects, in: Proceedings of the ECEEE Summer Study 
2005, pp. 505-512. 

V&S price catalogue (2005). Gross prices for house construction (Danish title: V&S prisbogen 2005, 
husbygning brutto), Byggecentrum, Lautrupvang 1B, DK-2750 Ballerup, Denmark. 

Wright J.A., Loosemore H.A. and Farmani R. (2002). Optimization of building thermal design and control by 
multi-criterion genetic algorithm, Energy and Buildings, vol. 34, pp. 959-972. 


