Aalborg Universitet

AALBORG UNIVERSITY

All P_{3}-equipackable graphs

Randerath, Bert; Vestergaard, Preben D.

Publication date:
2008

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Randerath, B., \& Vestergaard, P. D. (2008). All P -equipackable graphs. Department of Mathematical Sciences, Aalborg University. Research Report Series No. R-2008-10

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

AALBORG UNIVERSITY

All P_{3}-equipackable graphs

by
Bert Randerath and Preben Dahl Vestergaard
To appear in Discrete Mathematics

All P_{3}-equipackable graphs

Bert Randerath
Institut für Informatik
Universität zu Köln
D-50969 Köln, Germany
randerath@informatik.uni-koeln.de

Preben Dahl Vestergaard
Department of Mathematical Sciences
Aalborg University
DK-9220 Aalborg $\emptyset, ~ D e n m a r k ~$
pdv@math.aau.dk

October 7, 2008

Accepted for publication in Discrete Mathematics

Abstract

A graph G is P_{3}-equipackable if any sequence of successive removals of edge-disjoint copies of P_{3} from G always terminates with a graph having at most one edge. All P_{3}-equipackable graphs are characterised. They belong to a small number of families listed here.

Keywords: Packing, equipackable, randomly packable, covering, factor, decomposition, equiremovable

2000 Mathematics Subject Classification: 05C70, 05C35

1 Introduction

Let H be a subgraph of a graph G. An H-packing in G is a partition of the edges of G into disjoint sets, each of which is the edge set of a subgraph of G isomorphic to H, and possibly a remainder set. For short, $E(G)$ is partitioned into copies of H and maybe a remainder set. We list some references to an extensive literature at the back. A graph is called H-packable if G is the union of edge disjoint copies of H. An H-packing is maximal if the remainder set of edges is empty or contains no copy of H. An H-packing is maximum if $E(G)$ has been partitioned into a maximum number of sets isomorphic to H and a possible remainder set. A graph is called H-equipackable if any maximal H-packing is also a maximum H-packing, i.e., a graph G is H-equipackable if successive removals of copies of H from G can be done the same number of times regardless of the particular choices of edge sets for H in each step. If every maximal H-packing of a graph G uses all edges of G, then G is called randomly H-packable. Equivalently, G is randomly H-packable if each H-packing can be extended to an H-packing containing all edges of G, see e.g. [1, 2, 5, 6].
Zhang and Fan [9] have studied H-equipackable graphs for the case $H=2 K_{2}$. We shall consider path packing and in the following H will always be assumed to be the graph P_{3}, the path of length two, and we may omit explicit reference to it. A graph G is then (P_{3}) equipackable if successive removals of two adjacent edges from G can be done the same number of times
regardless of the particular choices of edge pairs in each step. A component consisting of one vertex is called trivial, a non-trivial component contains an edge. A graph has order $|V(G)|$ and size $|E(G)|$. A graph of odd (even) size is called odd (even). A vertex of valency one is called a leaf. A star is called even if its size is even, and by $K_{1,2 k}$ we denote the even star with $2 k$ leaves.

Observation 1 A graph is randomly H-packable if and only if it is H-packable and H-equipackable.
S. Ruiz [7] characterised randomly P_{3}-packable graphs.

Theorem $2 A$ connected graph G is randomly packable if and only if $G \cong C_{4}$ or $G \cong K_{1,2 k}$, $k \geq 1$.
Y. Caro, J. Schönheim [3] and S. Ruiz [7] stated the following result.

Lemma 3 A connected graph is packable if and only if it has even size.
This immediately implies Corollary 4 below.
Corollary 4 If a connected graph is equipackable, a maximal packing either contains all edges or all but one edge of the graph.

From B.L. Hartnell, P.D. Vestergaard [4] and P.D. Vestergaard [8] we have the following observation.

Observation 5 Let G be an equipackable graph. Then any sequence of P_{3}-removals from G will produce an equipackable graph.

From Corollary 4 and Observation 5 we obtain
Corollary 6 Let G be a connected graph. If there is a sequence of P_{3}-removals from G that creates more than one component of odd size, then G is not equipackable.

We now state our main result, a characterisation of all equipackable graphs with at most one non-trivial component:

Theorem 7 Let $G=(V, E)$ be a graph with at most one non-trivial component. Then G is equipackable if and only if its non-trivial component belongs to one of the thirteen families listed in Figure 1 or can be obtained by a sequence of P_{3}-removals from such a graph.

Clearly, we wish those thirteen families listed to be maximal w.r.t. P_{3}-removals, i.e., no graph from one of the families can be obtained as a subgraph of a larger equipackable graph by removing a P_{3} from it.
In the figures below we indicate by an arrow from which family of graphs we may obtain the given graph by a sequence of P_{3}-deletions. The shaded vertex sets may vary in cardinality.

Figure 1: All connected, maximal with respect to $\mathrm{P}_{3}-$ removal, P_{3}-equipackable graphs
We will prove this characterisation in the following section.

2 Proof of Theorem 7

By Lemma 3 and Theorem 2 a graph with at most one non-trivial component, which has even size, is equipackable if and only if its non-trivial component is a 4 -circuit or an even star (Figure 2). Thus it only remains to characterise equipackable graphs with at most one non-trivial component of odd size.

Figure 2: Connected P_{3}-equipackable graphs of even size (Ruiz graphs)

In [8] P.D. Vestergaard examined equipackable graph with all degrees ≥ 2 and stated the following result.

Theorem 8 A connected graph G with all degrees ≥ 2 is equipackable if and only if G is one of the graphs listed in Figure 3.

Figure 3: All connected P_{3}-equipackable graphs G without leaves

Observe that this solution contributes to our characterisation five graphs ($F_{6}, F_{3}, F_{4}, F_{5}, F_{9}$) maximal with respect to P_{3}-removals. All other graphs of this solution are obtained by a sequence of P_{3}-removals from graphs of the thirteen graph families of our characterisation. Thus it now remains to characterise equipackable graphs G which have only one non-trivial component, say H, where H has odd size and contains a leaf.

Since H has a leaf, it also has a bridge. Let $b=x y$ be a bridge of H. Throughout we shall denote the two components of $H-x y$ by H_{1} and H_{2} with $x \in V\left(H_{1}\right), y \in V\left(H_{2}\right)$. We shall first treat the case that G has a non-leaf bridge, then the case that all bridges are leaf bridges.

Case 1: Assume $b=x y$ is a non-leaf bridge of G, i.e., $\operatorname{deg}(x) \geq 2, \operatorname{deg}(y) \geq 2$.
Subcase 1.1: Assume further that H has a maximum P_{3}-packing \mathcal{P} which does not contain b. Since \mathcal{P} by Corollary 4 contains all but one edge of G and $b \notin \mathcal{P}$, we have for $i=1,2$ that $\mathcal{P} \cap H_{i}$ is a P_{3}-packing of H_{i} and therefore H_{i} has even size ≥ 2.
Let $z \in N(x) \backslash\{y\}$. By P_{3}-removal of $z x y$ we obtain an equipackable graph which has an odd component contained in $H_{1}-x z$, and $H-\{z x, x y\}$ also has the even component H_{2} which is connected, randomly packable and hence, by Observation 1, is either a 4-circuit or an even star. By symmetry also H_{1} is a 4 -circuit or an even star. Therefore H belongs to one of the families of graphs depicted in Figure 4.

Figure 4: Connected, P_{3}-equipackable graphs in Case 1.1
Note that only three new graph families (F_{7}, F_{8}, F_{10}) maximal with respect to P_{3}-removals contribute in this case to our characterisation. All other graph families of this subcase are obtained by a sequence of P_{3}-removals from graphs of the thirteen graph families of our characterisation.

Subcase 1.2: Assume now that each non-leaf bridge of H is contained in every maximum P_{3}-packing.
With notation as above let $b=x y$ be a non-leaf bridge of H, the components of $H-x y$ are H_{1}, H_{2}. Their sizes have the same parity since H has odd size. If H_{1}, H_{2} both had even size they would be P_{3}-packable and H would have a maximum P_{3}-packing not containing b in contradiction to assumption. Therefore H_{1}, H_{2} both have odd size.

Claim: At least one of H_{1}, H_{2} is an odd star.
Proof. P_{3}-removal from H of $z x y, z \in N(x) \backslash\{y\}$, creates an odd size component, namely H_{2}. If H_{2} is an odd star we are finished. Otherwise, we can isolate an odd component inside H_{2} : If $\operatorname{deg}_{H_{2}}(y)$ is even we P_{3}-remove all edges incident to y in pairs and if $\operatorname{deg}_{H_{2}}$ is odd we P_{3}-remove all but one edge incident to y in pairs and that remaining edge $y w, w \in N(y)$, together with $w r, r \in N(w) \backslash\{y\}$ (Since H_{2} is not an odd star there has to exist at least one such vertex w). Then $H_{1} \cup\{x y\}$ is even, connected, randomly packable and hence is either a 4 -circuit or an even star. Since $H_{1} \cup\{x y\}$ contains a leaf, it is an even star and hence H_{1} is an odd star. That proves the claim.

Suppose H_{1} and H_{2} are both odd stars. Now assume that, say x, is not the center of H_{1} and let v be the center of H_{1}. Since $v x$ is a non-leaf bridge and there obviously exists a maximum P_{3}-packing \mathcal{P} which does not contain $v x$, we obtain a contradiction to the assumption of Subcase 1.2. Hence we find that H is obtained by adding an edge between the centers of H_{1} and H_{2} (see Figure 5). Consequently H can be obtained from one of the graphs of the family F_{12} in our characterisation by P_{3}-deletions.

If, say, H_{2} is an odd star and H_{1} is not, then P_{3}-removal of $z x y$ from $H, z \in N(x) \backslash\{y\}$, gives that $H_{1}-x z$ has even size.
Now assume that $z x$ is a leaf bridge of H (and likewise of H_{1}), i.e., $\operatorname{deg}_{H}(z)=1$.
Then P_{3}-removal of $z x y$ leaves the odd component H_{2} and $H_{1}-x z$ with one non-trivial even component. Thus the non-trivial even component of $H_{1}-x z$ is either a 4 -circuit or an even star. The former yields easily a non-equipackable graph, the latter gives that H_{1} is an odd star, a contradiction to assumption on H_{1}.
Suppose now that $z x$ is a non-leaf bridge of H (and likewise for H_{1}).
The two components of $H_{1}-x z$ have sizes of same parity. That cannot be odd since $G-z x y$ would then have three odd components in contradiction to Corollary 6. It cannot be even either because then we could easily construct a maximum P_{3}-packing \mathcal{P} which does not contain the non-leaf bridge $x z$, a contradiction to the basic assumption of this subcase.
So we may for all $z \in N(x) \backslash\{y\}$ assume that $x z$ is not a bridge of H (and H_{1}).
P_{3}-removal of $z x y$ for $z \in N(x) \backslash\{y\}$ produces the connected, even component $H_{1}-x z$ which is then randomly P_{3}-packable and hence is either an even star or a 4 -circuit. If $H_{1}-x z$ is a 4 -circuit we are immediately led to H not being equipackable because, if a, b, c, d are the edges of this 4 -circuit (in cyclic order) then the packing $\{x y, a\},\{x z, c\}$ cannot be extended to a maximum packing of H. Observe that we have $N(x) \backslash\{y\}=\left\{z_{1}, z_{2}, \ldots, z_{p}\right\}$ with $z_{1}=z$ and $p \geq 2$. Thus for all $z_{i} \in N(x) \backslash\{y\}$ the connected graph $H_{1}-x z_{i}$ is an even star.It follows that $p=2$ and $H_{1}-x z_{i}$ must always be isomorphic to a $P_{3}=K_{1,2}$ with a center vertex z_{3-i} having neighbours x and z_{i} for $i=1,2$. Thus H_{1} is a 3 -circuit with vertices x, z_{1}, z_{2} with x joined to y, and y has an odd number of leaves attached (see Figure 5).

Figure 5: Connected P_{3}-equipackable graphs in Case 1.2
Observe that none of these equipackable graph families are new families maximal with respect to P_{3}-removals for our characterisation. Both graph families of this subcase are obtained by a sequence of P_{3}-removals from graphs of the graph families $\left(F_{12}, F_{13}\right)$ of our characterisation. We may now assume that there exist no non-leaf bridge of H.

Case 2: All bridges of H are leaf bridges and there exists at least one bridge $b=x y$ of H, i.e. $H_{2}=\{y\}$.
If all $x z, z \in N(x) \backslash\{y\}$, are bridges of H, then they are leaf bridges and H is an odd star, derivable from a member of our characterisation by a sequence of P_{3}-removals. Thus we may assume that x is contained in at least one cycle of H_{1} and there exist at least two edges incident to x, which are not bridges.
If x has an even number of neighbours in H_{1} we can isolate $x y$ by pairing up and P_{3}-removing all $x z, z \in N(x) \backslash\{y\}$. If x has an odd number of neighbours in H_{1} we isolate $x y$ by P_{3}-removing
all $x z, z \in N(x) \backslash\{y\}$, and one further edge $z w, w \in N(z) \backslash\{x\}$ (observe that such an edge has to exist). For simplicity, let E^{\prime} be the set of edges of all P_{3} 's necessary to remove in order to isolate the bridge $x y$ and $H^{\prime}=H-E^{\prime}$. Since $x y$ is isolated in H^{\prime} and H^{\prime} is equipackable, we obtain by Lemmas 3, Observation 5 and Corollaries 4, 6 that all non-trivial components D not containing x and y are randomly packable and therefore of even size ≥ 2. Thus every such non-trivial component D is either a 4 -circuit or an even star.
Assume that one of these components is a 4 -circuit C with vertices $\left\{c_{0}, c_{1}, c_{2}, c_{3}\right\}$ and edges $\left\{c_{i} c_{(i+1) \text { mod } 4} \mid 0 \leq i \leq 3\right\}$.
As all bridges of H are leaf bridges, with $E_{C}=\left\{x c \mid c \in N_{H_{1}}(x) \cap V(C)\right\}$ we have $\left|E_{C}\right| \geq 2$. It is easy to see that we can remove two (if $|E(C)|=2$) or three $P_{3}^{\prime} s$ from the subgraph of H induced by $\{x\} \cup V(C)$ to produce two (if $|E(C)|=3$) or three isolated edges (including $x y$) in contradiction with Corollary 6 .
If $\left|E_{C}\right|=2$ there exist $i, j, k, \ell=\{0,1,2,3\}$ such that $x c_{i}, x c_{j} \in E_{C}$ and $x c_{i} c_{k}, x c_{j} c_{\ell}$ are P_{3} 's of H that isolate the two independent edges $c_{i} c_{k}, c_{j} c_{\ell}$ remaining in C. By Corollary 6 then H is not equipackable, a contradiction. If $\left|E_{C}\right|=3$, without loss of generality we may assume that $E_{C}=\left\{x c_{0}, x c_{1}, x c_{2}\right\}$ and in that case $E^{\prime} \cup\left\{c_{0} c_{3}, c_{1} c_{2}\right\}$ is an edge set of even size, which can paired up in $P_{3}^{\prime} \mathrm{s}$ whose removal isolate two edges $c_{0} c_{1}$ and $c_{2} c_{3}$ on C, by Corollary 6 that contradicts H being equipackable. If $\left|E_{C}\right|=4$, again $E^{\prime} \cup\left\{c_{0} c_{3}, c_{1} c_{2}\right\}$ has even size and can be paired up and P_{3}-removed to leave two independent edges $c_{0} c_{1}$ and $c_{2} c_{3}$ on C, giving a contradiction to H being equipackable.
Hence every such non-trivial component D not containing x and y is an even star.
Now suppose there exist two different components R_{1} and R_{2} of this kind. Analogously to the previous argumentation let $E_{R_{i}}$ be the subset of E^{\prime} of edges incident to the vertices of R_{i} for $i=1,2$. Since H is connected, and all bridges of H are leaf bridges there has to exist for each $i=1,2$ at least two edges $f_{i}^{\prime}, f_{i}^{\prime \prime}$ of $E_{R_{i}}$ adjacent to an edge of R_{i}. Pairing up f_{i}^{\prime} with one edge of $E\left(R_{i}\right)$, say $f_{i}, i=1,2$, and P_{3}-removing all remaining edges of E^{\prime} (their number is even, recall that $f_{i} \notin E^{\prime}$) will isolate two odd stars $E_{R_{1}}-f_{1}$ and $E_{R_{2}}-f_{2}$, a contradiction to Corollary 6 . Thus there exists only one non-trivial component R of H^{\prime} not containing x and y, and that is an even star.
We now distinguish between two cases depending on the parity of $\operatorname{deg}_{H_{1}}(x)$. Assume $\operatorname{deg}_{H_{1}}(x)$ is even. Then obviously H is, regardless of whether the centre r of R is adjacent to x or not, a member of the graph family F_{12} or can be obtained by a sequence of P_{3}-removals from a member of F_{12}.
Now it remains to consider that $\operatorname{deg}_{H_{1}}(x)$ is odd, i. e. $d_{H}(x)$ is even. As already noted at the beginning of Case 2 the vertex x must be contained in at least one cycle of H_{1} and there exist at least two edges incident to x, which are not bridges. Since R is an even star $K_{1,2 l}$ with $l \geq 1$ it is not difficult to deduce that the cycle has length ≤ 5. First let R be a star with at least four branches. Recall that E^{\prime} is the set of edges of all P_{3} 's necessary to remove in order to isolate the bridge $x y$ and let $H^{\prime}=H-E^{\prime}$. Moreover, since x has an odd number of neighbours in H_{1} we isolate $x y$ by P_{3}-removing all $x z, z \in N(x) \backslash\{y\}$, and one further edge $z w, w \in N(z) \backslash\{x\}$. Regardless of the choice of this additional edge $z w$ the remainder will be an even star with at least four edges. Concatenation of all ingredients builds up a member of F_{12} or a graph that can be obtained by a sequence of P_{3}-removals from a member of F_{12}. Therefore we conclude that R is always an even star with two branches regardless of the choice of the additional edge $z w$. By
inspection we obtain that H is either the graph F_{11} or F_{13} depicted in Figure 6 .

Figure 6: Connected P_{3}-equipackable graphs in Case 2
This completes the proof of our main result.
The proof can also be done by induction on $|E(G)|$, but the arguments are not shorter.
Acknowledgement: The authors thank the anonymous referees for careful reading and valuable comments on this text.

References

[1] L.W. Beineke, P. Hamburger, W.D. Goddard, Random packings of graphs, Discrete Math. 125(1994), 45-54.
[2] J. Bosák, Decompositions of graphs, Kluwer Academic Publishers, Dordrecht, (1990).
[3] Y. Caro, J. Schönheim, Decompositions of trees into isomorphic subtrees, Ars Combin. 9 (1980), 119-130.
[4] B.L. Hartnell, P.D. Vestergaard, Equipackable graphs, Bull. Inst. Combin. Appl. 46 (2006), 35-48.
[5] R. Molina, On randomly P_{k}-decomposable graphs, Congr. Numer. 148 (2001), 207-221.
[6] R. Molina, M. McNally and K. Smith, Characterising randomly P_{k}-decomposable graphs for $k \leq 9$, Congr. Numer. 156 (2002), 211-221.
[7] S. Ruiz, Randomly decomposable graphs, Discrete Math. 57 (1985), 123-128.
[8] P.D. Vestergaard, A short update on equipackable graphs, Discrete Math. 308 (2008), 161-165.
[9] Y. Zhang, Y. Fan, M_{2}-equipackable graphs, Discrete Appl. Math. 154 (2006), 1766-1770.

