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Abstract

A graph G is P3-equipackable if any sequence of successive removals of edge-disjoint copies
of P3 from G always terminates with a graph having at most one edge. All P3-equipackable
graphs are characterised. They belong to a small number of families listed here.
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1 Introduction

Let H be a subgraph of a graph G. An H-packing in G is a partition of the edges of G into
disjoint sets, each of which is the edge set of a subgraph of G isomorphic to H, and possibly a
remainder set. For short, E(G) is partitioned into copies of H and maybe a remainder set. We
list some references to an extensive literature at the back. A graph is called H-packable if G is
the union of edge disjoint copies of H. An H-packing is maximal if the remainder set of edges
is empty or contains no copy of H. An H-packing is maximum if E(G) has been partitioned
into a maximum number of sets isomorphic to H and a possible remainder set. A graph is
called H-equipackable if any maximal H-packing is also a maximum H-packing, i.e., a graph G

is H-equipackable if successive removals of copies of H from G can be done the same number
of times regardless of the particular choices of edge sets for H in each step. If every maximal
H-packing of a graph G uses all edges of G, then G is called randomly H-packable. Equivalently,
G is randomly H-packable if each H-packing can be extended to an H-packing containing all
edges of G, see e.g. [1, 2, 5, 6].
Zhang and Fan [9] have studied H-equipackable graphs for the case H = 2K2. We shall consider
path packing and in the following H will always be assumed to be the graph P3, the path of
length two, and we may omit explicit reference to it. A graph G is then (P3-) equipackable
if successive removals of two adjacent edges from G can be done the same number of times



regardless of the particular choices of edge pairs in each step. A component consisting of one
vertex is called trivial, a non-trivial component contains an edge. A graph has order |V (G)| and
size |E(G)|. A graph of odd (even) size is called odd (even). A vertex of valency one is called a
leaf. A star is called even if its size is even, and by K1,2k we denote the even star with 2k leaves.

Observation 1 A graph is randomly H-packable if and only if it is H-packable and H-equipackable.

S. Ruiz [7] characterised randomly P3-packable graphs.

Theorem 2 A connected graph G is randomly packable if and only if G ∼= C4 or G ∼= K1,2k,

k ≥ 1.

Y. Caro, J. Schönheim [3] and S. Ruiz [7] stated the following result.

Lemma 3 A connected graph is packable if and only if it has even size.

This immediately implies Corollary 4 below.

Corollary 4 If a connected graph is equipackable, a maximal packing either contains all edges
or all but one edge of the graph.

From B.L. Hartnell, P.D. Vestergaard [4] and P.D. Vestergaard [8] we have the following obser-
vation.

Observation 5 Let G be an equipackable graph. Then any sequence of P3-removals from G will
produce an equipackable graph.

From Corollary 4 and Observation 5 we obtain

Corollary 6 Let G be a connected graph. If there is a sequence of P3-removals from G that
creates more than one component of odd size, then G is not equipackable.

We now state our main result, a characterisation of all equipackable graphs with at most one
non-trivial component:

Theorem 7 Let G = (V, E) be a graph with at most one non-trivial component. Then G is
equipackable if and only if its non-trivial component belongs to one of the thirteen families listed
in Figure 1 or can be obtained by a sequence of P3-removals from such a graph.

Clearly, we wish those thirteen families listed to be maximal w.r.t. P3-removals, i.e., no graph
from one of the families can be obtained as a subgraph of a larger equipackable graph by removing
a P3 from it.
In the figures below we indicate by an arrow from which family of graphs we may obtain the
given graph by a sequence of P3-deletions. The shaded vertex sets may vary in cardinality.
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Figure 1: All connected, maximal with respect to P −removal, P −equipackable graphs3 3

# odd

4−circuit

We will prove this characterisation in the following section.

2 Proof of Theorem 7

By Lemma 3 and Theorem 2 a graph with at most one non-trivial component, which has even
size, is equipackable if and only if its non-trivial component is a 4-circuit or an even star (Fig-
ure 2). Thus it only remains to characterise equipackable graphs with at most one non-trivial
component of odd size.
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Figure 2:   Connected P −equipackable graphs of even size (Ruiz graphs)  
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In [8] P.D. Vestergaard examined equipackable graph with all degrees ≥ 2 and stated the fol-
lowing result.

Theorem 8 A connected graph G with all degrees ≥ 2 is equipackable if and only if G is one of
the graphs listed in Figure 3.
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3Figure 3: All connected P −equipackable graphs G without leaves

Observe that this solution contributes to our characterisation five graphs (F6, F3, F4, F5, F9)
maximal with respect to P3-removals. All other graphs of this solution are obtained by a se-
quence of P3-removals from graphs of the thirteen graph families of our characterisation. Thus it
now remains to characterise equipackable graphs G which have only one non-trivial component,
say H, where H has odd size and contains a leaf.

Since H has a leaf, it also has a bridge. Let b = xy be a bridge of H. Throughout we shall
denote the two components of H −xy by H1 and H2 with x ∈ V (H1), y ∈ V (H2). We shall first
treat the case that G has a non-leaf bridge, then the case that all bridges are leaf bridges.

Case 1: Assume b = xy is a non-leaf bridge of G, i.e., deg(x) ≥ 2, deg(y) ≥ 2.

Subcase 1.1: Assume further that H has a maximum P3-packing P which does not contain b.

Since P by Corollary 4 contains all but one edge of G and b /∈ P, we have for i = 1, 2 that P∩Hi

is a P3-packing of Hi and therefore Hi has even size ≥ 2.
Let z ∈ N(x) \ {y}. By P3-removal of zxy we obtain an equipackable graph which has an odd
component contained in H1 − xz, and H − {zx, xy} also has the even component H2 which is
connected, randomly packable and hence, by Observation 1, is either a 4-circuit or an even star.
By symmetry also H1 is a 4-circuit or an even star. Therefore H belongs to one of the families
of graphs depicted in Figure 4.

4



8F
7FF6

12
F

10F

F12

# odd# even

# even # even# odd # odd

Figure 4:  Connected, P −equipackable graphs in Case 1.13

# odd # even

x       yx       y x       y

x       y
x                         y

x       y

Note that only three new graph families (F7, F8, F10) maximal with respect to P3-removals con-
tribute in this case to our characterisation. All other graph families of this subcase are obtained
by a sequence of P3-removals from graphs of the thirteen graph families of our characterisation.

Subcase 1.2: Assume now that each non-leaf bridge of H is contained in every maximum

P3-packing.

With notation as above let b = xy be a non-leaf bridge of H, the components of H − xy are
H1, H2. Their sizes have the same parity since H has odd size. If H1, H2 both had even size
they would be P3-packable and H would have a maximum P3-packing not containing b in con-
tradiction to assumption. Therefore H1, H2 both have odd size.

Claim: At least one of H1, H2 is an odd star.
Proof. P3-removal from H of zxy, z ∈ N(x) \ {y}, creates an odd size component, namely H2.
If H2 is an odd star we are finished. Otherwise, we can isolate an odd component inside H2: If
degH2(y) is even we P3-remove all edges incident to y in pairs and if degH2 is odd we P3-remove
all but one edge incident to y in pairs and that remaining edge yw, w ∈ N(y), together with
wr, r ∈ N(w) \ {y} (Since H2 is not an odd star there has to exist at least one such vertex w).
Then H1∪{xy} is even, connected, randomly packable and hence is either a 4-circuit or an even
star. Since H1∪{xy} contains a leaf, it is an even star and hence H1 is an odd star. That proves
the claim.2

Suppose H1 and H2 are both odd stars. Now assume that, say x, is not the center of H1

and let v be the center of H1. Since vx is a non-leaf bridge and there obviously exists a maxi-
mum P3-packing P which does not contain vx, we obtain a contradiction to the assumption of
Subcase 1.2. Hence we find that H is obtained by adding an edge between the centers of H1

and H2 (see Figure 5). Consequently H can be obtained from one of the graphs of the family
F12 in our characterisation by P3-deletions.
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If, say, H2 is an odd star and H1 is not, then P3-removal of zxy from H, z ∈ N(x) \ {y}, gives
that H1 − xz has even size.
Now assume that zx is a leaf bridge of H (and likewise of H1), i.e., degH(z) = 1.
Then P3-removal of zxy leaves the odd component H2 and H1 − xz with one non-trivial even
component. Thus the non-trivial even component of H1 − xz is either a 4-circuit or an even
star. The former yields easily a non-equipackable graph, the latter gives that H1 is an odd star,
a contradiction to assumption on H1.
Suppose now that zx is a non-leaf bridge of H (and likewise for H1).
The two components of H1 − xz have sizes of same parity. That cannot be odd since G − zxy

would then have three odd components in contradiction to Corollary 6. It cannot be even either
because then we could easily construct a maximum P3-packing P which does not contain the
non-leaf bridge xz, a contradiction to the basic assumption of this subcase.
So we may for all z ∈ N(x) \ {y} assume that xz is not a bridge of H (and H1).
P3-removal of zxy for z ∈ N(x) \ {y} produces the connected, even component H1−xz which is
then randomly P3-packable and hence is either an even star or a 4-circuit. If H1−xz is a 4-circuit
we are immediately led to H not being equipackable because, if a, b, c, d are the edges of this
4-circuit (in cyclic order) then the packing {xy, a}, {xz, c} cannot be extended to a maximum
packing of H. Observe that we have N(x) \ {y} = {z1, z2, ..., zp} with z1 = z and p ≥ 2. Thus
for all zi ∈ N(x) \ {y} the connected graph H1 − xzi is an even star.It follows that p = 2 and
H1−xzi must always be isomorphic to a P3 = K1,2 with a center vertex z3−i having neighbours
x and zi for i = 1, 2. Thus H1 is a 3-circuit with vertices x, z1, z2 with x joined to y, and y has
an odd number of leaves attached (see Figure 5).

F
13

F12
# odd # odd # odd

Figure 5: Connected P −equipackable graphs in Case 1.2 
3

Observe that none of these equipackable graph families are new families maximal with respect
to P3-removals for our characterisation. Both graph families of this subcase are obtained by a
sequence of P3-removals from graphs of the graph families (F12, F13) of our characterisation. We
may now assume that there exist no non-leaf bridge of H.

Case 2: All bridges of H are leaf bridges and there exists at least one bridge b = xy of

H, i.e. H2 = {y}.
If all xz, z ∈ N(x) \ {y}, are bridges of H, then they are leaf bridges and H is an odd star,
derivable from a member of our characterisation by a sequence of P3-removals. Thus we may
assume that x is contained in at least one cycle of H1 and there exist at least two edges incident
to x, which are not bridges.
If x has an even number of neighbours in H1 we can isolate xy by pairing up and P3-removing
all xz, z ∈ N(x)\{y}. If x has an odd number of neighbours in H1 we isolate xy by P3-removing
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all xz, z ∈ N(x) \ {y}, and one further edge zw, w ∈ N(z) \ {x} (observe that such an edge
has to exist). For simplicity, let E′ be the set of edges of all P3’s necessary to remove in order
to isolate the bridge xy and H ′ = H − E′. Since xy is isolated in H ′ and H ′ is equipackable,
we obtain by Lemmas 3, Observation 5 and Corollaries 4, 6 that all non-trivial components D

not containing x and y are randomly packable and therefore of even size ≥ 2. Thus every such
non-trivial component D is either a 4-circuit or an even star.
Assume that one of these components is a 4-circuit C with vertices {c0, c1, c2, c3} and edges
{cic(i+1)mod4|0 ≤ i ≤ 3}.
As all bridges of H are leaf bridges, with EC = {xc|c ∈ NH1(x) ∩ V (C)} we have |EC | ≥ 2.
It is easy to see that we can remove two (if |E(C)| = 2) or three P ′

3s from the subgraph of H

induced by {x} ∪ V (C) to produce two (if |E(C)| = 3) or three isolated edges (including xy) in
contradiction with Corollary 6.
If |EC | = 2 there exist i, j, k, ℓ = {0, 1, 2, 3} such that xci, xcj ∈ EC and xcick, xcjcℓ are P3’s of
H that isolate the two independent edges cick, cjcℓ remaining in C. By Corollary 6 then H is
not equipackable, a contradiction. If |EC | = 3, without loss of generality we may assume that
EC = {xc0, xc1, xc2} and in that case E′∪{c0c3, c1c2} is an edge set of even size, which can paired
up in P ′

3s whose removal isolate two edges c0c1 and c2c3 on C, by Corollary 6 that contradicts
H being equipackable. If |EC | = 4, again E′ ∪ {c0c3, c1c2} has even size and can be paired up
and P3-removed to leave two independent edges c0c1 and c2c3 on C, giving a contradiction to
H being equipackable.
Hence every such non-trivial component D not containing x and y is an even star.
Now suppose there exist two different components R1 and R2 of this kind. Analogously to the
previous argumentation let ERi be the subset of E′ of edges incident to the vertices of Ri for
i = 1, 2. Since H is connected, and all bridges of H are leaf bridges there has to exist for each
i = 1, 2 at least two edges f ′

i , f
′′
i of ERi adjacent to an edge of Ri. Pairing up f ′

i with one edge of
E(Ri), say fi, i = 1, 2, and P3-removing all remaining edges of E′ (their number is even, recall
that fi /∈ E′) will isolate two odd stars ER1 − f1 and ER2 − f2, a contradiction to Corollary 6.
Thus there exists only one non-trivial component R of H ′ not containing x and y, and that is
an even star.
We now distinguish between two cases depending on the parity of degH1(x). Assume degH1(x)
is even. Then obviously H is, regardless of whether the centre r of R is adjacent to x or not, a
member of the graph family F12 or can be obtained by a sequence of P3-removals from a member
of F12.
Now it remains to consider that degH1(x) is odd, i. e. dH(x) is even. As already noted at the
beginning of Case 2 the vertex x must be contained in at least one cycle of H1 and there exist
at least two edges incident to x, which are not bridges. Since R is an even star K1,2l with l ≥ 1
it is not difficult to deduce that the cycle has length ≤ 5. First let R be a star with at least four
branches. Recall that E′ is the set of edges of all P3’s necessary to remove in order to isolate
the bridge xy and let H ′ = H − E′. Moreover, since x has an odd number of neighbours in H1

we isolate xy by P3-removing all xz, z ∈ N(x) \ {y}, and one further edge zw, w ∈ N(z) \ {x}.
Regardless of the choice of this additional edge zw the remainder will be an even star with at
least four edges. Concatenation of all ingredients builds up a member of F12 or a graph that can
be obtained by a sequence of P3-removals from a member of F12. Therefore we conclude that R

is always an even star with two branches regardless of the choice of the additional edge zw. By
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inspection we obtain that H is either the graph F11 or F13 depicted in Figure 6.

F
11

F
13

F12

# even # odd # odd

(# even) (# even)
# odd

 

Figure 6: Connected P −equipackable graphs in Case 23

This completes the proof of our main result. 2

The proof can also be done by induction on |E(G)|, but the arguments are not shorter.

Acknowledgement: The authors thank the anonymous referees for careful reading and valu-
able comments on this text.
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