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Dam Wall Detection and Tracking Using a Mechanically Scanned
Imaging Sonar

Wajahat Kazmi, Pere Ridao, David Ribas and Emili Hernández

Abstract— In Dam inspection tasks, an underwater robot has
to grab images while surveying the wall meanwhile maintaining
a certain distance and relative orientation. This paper proposes
the use of an MSIS (Mechanically Scanned Imaging Sonar) for
relative positioning of a robot with respect to the wall. An
imaging sonar gathers polar image scans from which depth
images (Range & Bearing) are generated. Depth scans are first
processed to extract a line corresponding to the wall (with the
Hough Transform), which is then tracked by means of an EKF
(Extended Kalman Filter) using a static motion model and an
implicit measurement equation associating the sensed points
to the candidate line. The line estimate is referenced to the
robot fixed frame and represented in polar coordinates (ρ&θ)
which directly corresponds to the actual distance and relative
orientation of the robot with respect to the wall. The proposed
system has been tested in simulation as well as in water tank
conditions.

I. INTRODUCTION

This research was performed in the context of a project
funded by the Spanish Ministry of Science and Technology
which aims to explore the possible industrial applications of
underwater robots such as dam, harbour and underwater ca-
ble/pipe inspection. After a meeting with the civil engineers
of the ENDESA power generation company in Spain, one of
the tasks identified for dam inspection was a visual survey
of the wall in order to assess the state of the concrete and/or
the fence which protects the water inlet of the penstock
gallery(an intake structure that controls water flow). Until
now, these inspections were commonly achieved through the
visualization of a video recorded by a professional diver
without using any geo-referencing information.

Although, over the last few years, several companies have
claimed providing underwater robots for dam inspection, to
the best of the author’s knowledge, none of them provides
an integral solution to the problem. Normally they propose
the use of small class ROVs (Remotely Operated Vehicles),
working as teleoperated cameras for video recording, to
replace the professional diver who traditionally occupied
this place. There exist few research precedents providing an
added value solution. One of the most relevant works is the
ROV3 system developed by the researchers of the Institut de
recherche HydroQuébec (Canada) [1]. This is a small ROV,
localized through an LBL (Long Base Line) system, which
makes use of a multibeam sonar for collision avoidance. The
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system is able to control the distance to the wall and includes
several video cameras as well as a laser system for 2D
and 3D measurements. The COMEX and the Electricité De
France companies (France) developed a similar project [2]. In
this case, an ROV manufactured by COMEX was localized
using a 5-transponder LBL. Again, several video cameras
together with 2D (double spot) laser system were used to
take measurements. During the year 2002, in collaboration
with the Research Development and Technological Transfer
Centre (CIFATT) IPA-Cluj, our team used the URIS robot
working as an ROV to build an image mosaic [3] of a small
area of the wall of the Tartina Dam in the surroundings of
Cluj (Romania). To the best of the author‘s knowledge, this
was the first time that image mosaicking techniques were
applied for dam inspection. An image mosaic gives an added
advantage as it provides the civil engineers with a global
view of the inspection area. Unfortunately, the ROV was not
localized and hence the resulting image mosaic was not geo-
referenced.

Our current approach (Fig.1) for obtaining a geo-
referenced, high resolution visual map of the wall, consists
of programming the ICTINEUAUV [4] robot to follow a
pre-defined survey path in front of a selected area of the
wall while being localized using a dead reckoning system
based on a DVL(Doppler Velocity Log), a heading and a
depth sensor. To bound the drift, a buoy equipped with a
DGPS (Differential Global Positioning System), an MRU
(Motion Reference Unit) and a USBL(Ultra Short Base Line)
is used which provides geo-referenced position fixes, feed
to the robot through an umbilical cable when available or
through an acoustic modem otherwise. While moving along
the wall, the robot gathers images of the wall tagged with
a time stamp and synchronized with all the sensor data
including the navigation. As discussed in [5], in tasks such as
dam survey, it is important to maintain a specified distance
and specially a certain relative orientation with respect to
the wall (usually orthogonal) in order to achieve a high
resolution image mosaic. A similar problem was faced for
ship hull inspection as reported in [6]. In that case, the
DVL was looking towards the ship’s hull and the range
readings were used to compute the relative orientation of
the robot with respect to the hull, while in our case, the
robot is passively stable in roll and pitch and multiple range
and bearing measurements of sonar are used to compute the
robot’s relative orientation and distance in front of the dam
wall.

The aim of this paper is to propose, design and test, a
suitable method to detect the wall of a dam, its distance and
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Fig. 1. AUV orientation problem in a dam’s wall inspection task

orientation with respect to the robot. Although not discussed
in this paper, these parameters will further be used for close
loop control in order to maintain a relative position during
the survey. The proposed system works by first acquiring
an acoustic image of a specified sector of the wall in front
of the robot with an MSIS. Then, that acoustic image is
transformed into a range & bearing scan which is a set of
points compounded with the robot trajectory representing it
in an initial frame of reference. After this pre-processing,
a line feature is estimated by means of a standard Hough
Transform but using an improved sonar model to decide
which candidate line should be voted for by each sonar
point. In order to further utilize sonar data for correcting this
estimate of the wall, the estimated line is used to initialize
an EKF based on a static motion model. Updates for every
compatible sonar point of the scan are carried out using an
implicit measurement equation stating that the point belongs
to the line. The system has been tested in simulation as well
as in water tank conditions. Finally, different alternatives
are studied and compared in order to improve the tracking
such as using heading updates from compass or complete
navigation information from DVL to reference the sonar data
to a selected frame of reference.

The paper is organized as follows. First, the sensor suite
needed onboard is described in section II. Section III is
devoted to the description of the feature extraction and
tracking. Finally the simulation environment and the results
are reported in sections IV and V respectively, before the
conclusions in section VI.

II. SENSOR SUITE

A. MiniKing Imaging Sonar (MSIS)

The MiniKing Imaging Sonar is a compact device de-
signed for use in underwater applications such as obstacle
avoidance and target recognition for both AUVs and ROVs.
This sonar can perform scans in a 2D plane by rotating a fan-
shaped sonar beam through a series of small angle steps. It
can be programmed to cover variable sector lengths starting
from a few degrees to a full 360o scan. In this project, it is
programmed for a 90o sector, repetitive scan. Its fan-shaped
beam has a vertical aperture angle of 40o and a narrow
horizontal aperture of 3o.

B. Sontek Argonaut DVL

The SonTek Argonaut Doppler Velocity Log is a sensor
specially designed for AUV applications which measures
ocean currents, vehicle speed over ground and through water
using a precise 3-axis measurement system based on the
Doppler shift effect. It operates at a frequency of 1500 kHz
and has a range of about 15m. The velocity information
by this DVL is used to localize the robot through dead
reckoning.

III. FEATURE EXTRACTION AND TRACKING

For planar structures such as walls, the intersection of the
fan beam of the imaging sonar produces a 2D slice with high
intensity values near the center. When the sonar beam rotates,
this slice extends over the wall and forms a thick line (Fig.2).
Segmenting this thick line produces a relatively concentrated
zone of points which can safely be estimated to a line [7].
Although dam walls are generally curved to improve the
structural resistance to the water pressure, generally, they can
be accurately represented by a line feature. This line can be
initially estimated applying the Hough Transform to a depth
scan obtained after some pre-processing [8]. An improved
sonar model is used to decide a set of compatible lines that
a particular sonar-point-measurement should vote for. Then,
the initial line candidate computed can further be refined in
a tracking process where the points extracted from the sonar
data are associated to the line estimate if a compatibility test
is satisfied.

Fig. 2. Sonar Image (facing wall at ≈ 4m, 90o sector, single scan)

A. Beam Segmentation and Range Detection

The log file generated by the MSIS contains one row of
data for every beam, with columns 4 to 503 containing echo
intensities of a return. Keeping in mind the reflections from
robot body itself along with reverberations from side and
back walls, data from first and last few (around ten) columns
are discarded. Maximum value of intensity for every row (or
beam) is then taken as measurement corresponding to the
features in the environment. In this work, the range of the
sonar sensor is kept at 10m with a resolution of 10cm. This
means every column index from 4 to 503 of the log file
represents intensity at a range = (index-3) x 10cm



B. Sonar Model

Due to the horizontal aperture (beamwidth), a bearing
cannot be related to a single point in space. Leonard-Whyte
[9] and Neira et al. [10] proposed a sonar model where a
sonar measurement (ρS , θS) is not associated with a unique
point but with an arc of points with radius ρS and an aperture
α being centered at the actual sonar measurement. Hence the
points (ρSj , θ

S
j ) associated with the measurement are those

satisfying:

θS − α/2 ≤ θSj ≤ θS + α/2 ; ρSj = ρS (1)

This extends the sonar measurement with a range of possible
bearings within the horizontal aperture α of the beam (where
α in our case is 3o). Hence, the set of candidate lines
which explain the sonar measurement are those tangent
to the corresponding arc. Although this model is suitable
for mobile robots using wide angle low resolution sonar
beams, it still needs to be improved to explain the behavior
experimentally observed with the MSIS. For this reason,
Ribas et al [8] further extended this model for beams with a
narrow horizontal aperture and working underwater. In this
case, the measurements are not only associated to the arc
tangent surfaces within the horizontal aperture, but also to the
surfaces incident at certain angles β (for the Miniking sonar,
β= 60o [8]). Now a candidate line (θBk , ρ

B
k ) is described by

the following equations (see Fig.3)

θsj − β/2 ≤ θBk ≤ θsj + β/2 (2)

ρBk = xsjcosθ
B
k + ysjsinθ

B
k + ρsjcosθ

Sj
k (3)

The base frame {B} shown in Fig.3 is usually the vehicle
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Fig. 3. Modified Sonar Model

frame and {S} is the beam frame located and rotating with
the transducer head.

C. Tracking

As explained above, the first scan is processed by means
of the Hough Transform to produce an initial estimate of the
line (ρL, θL) ≡ (θBk , ρ

B
k ) which is then used to initialize the

state vector of the EKF for tracking the line:

x0 =
[
ρL
θL

]
; P0 =

[
σ2
ρ 0

0 σ2
θ

]
(4)

Although, as stated in [11], it is possible to obtain an
estimate of the covariance of the line feature through a
careful processing of the acoustic imprint left by the line in
the segmented image, in this work, for the sake of simplicity,
the covariance has been initialized according to the resolution
of the Hough Table. Hence the robot will move exploring the
dam while the line representing the wall will remain almost
static in the robot frame except for minor oscillations due to
an imprecise control as well as some possible perturbations.
Therefore, a static motion model including Gaussian noise to
deal with these perturbations is used in the motion prediction
step of the EKF:

xk = xk−1 +wk ; E[wk] = 0 ; E[wkwTj ] = δkjQk (5)

The updates of the line estimate come from the sonar-point-
measurements:

ŝk =
[
ρp
θp

]
; sk = ŝk + vk (6)

E[vk] = 0 ; E[vkvTj ] = δkjRk (7)

where Rk corresponds to the uncertainty of the sonar point
measurement. In order to relate the points to the line, an
implicit measurement equation is used [12] which states that
the point belongs to the line, or equivalently, the point to
line distance is zero:

hk = h(qk, xk) = ρL − xpcosθL − ypsinθL = 0 (8)

qk = q(zk) =
[
xp
yp

]
=
[
ρpcosθp
ρpsinθp

]
(9)

where, for the sake of simplicity {B} and {S} origins
have been considered coincident. Only the points which are
statistically compatible with the line are used for the update.
Individual compatibility for every point is checked using the
compatibility test based on the Mahalanobis Distance:

D2 = hk(HkP
−
k HT

k + VkSkV
T
k )−1hTk < χ2

d,α′ (10)

Sk = Jqk
RkJ

T
qk

(11)

Jqk
=
∂qk
∂zk

; Hk =
∂hk(qk, xk)

∂xk
; Vk =

∂hk(qk, xk)
∂qk

(12)

where Sk is the measurement uncertainty in Cartesian coor-
dinates, D2 is the Mahalanobis Distance and χ2

d,α′ is the
Chi Square value of confidence; α′ being the confidence
level and d the dimension of h (1 in this case). If the
point is compatible, the update is carried out using the EKF
equations:

Kk = P−k HT (HkP
−
k HT

k + VkSkV
T
k )−1 (13)



x̂k = x−k −Kkhk (14)

P̂k = (I −KkHk)P−k (15)

D. Integrating Heading Measurements

Heading sensors, compass and/or gyros, are commonly
available in ROVs and AUVs and can be used to further
improve the line tracking. If the absolute orientation of the
robot ψWR , as well as the relative orientation of the wall with
respect to the robot θRL are known, it is possible to compute
the absolute orientation of the dam βWL :

βWL = ψWR + θRL (16)

Hence, after the first scan, once the line has been estimated,

Fig. 4. Integrating Compass updates into EKF state vector

the EKF can be initialized including βWL within the state
vector:

x0 =

ρWLθWL
βWL

 ; P0 =

 σ2
ρ 0 0

0 σ2
θ σ2

θ

0 σ2
θ (σ2

θ + σ2
ψ)


(17)

where it has been assumed that the robot was static enough
during the first scan to consider θRL independent from ψWR
so:

σ2
β = σ2

θ + σ2
ψ ; σβψ = σ2

θ (18)

Since a linear observation equation relates the heading mea-
surement with the state vector:

zk = ψWR ; zk = Hxk + vk (19)

E[vk] = 0 ; E[vkvTj ] = δkjRk (20)

whenever a heading measurement is available, the following
H matrix:

H = [0 − 1 1]T (21)

can be used together with the standard KF linear update
equations to correct the current estimate. In case both mea-
surements (the sonar-point and the heading) are available at
same time step, the measurement vector becomes:

qk =

 ρpθp
ψWR

 =
[
q(sk)
ψWR

]
(22)

and the observation equation becomes the following non-
linear vector function:

h(qk, xk) =
[
ρL − xpcosθL − ypsinθL

ψWR

]
(23)

In this case, the update is carried out as follows:

Kk = P−k HT
k [HkP

−
k HT + V1k

SkV
T
1k

+ V2k
RkV

T
2k

] (24)

x̂k = x−k +Kk[zk − h(qk, x−k )] ; zk =
[

0
ψWR

]
(25)

where,

Hk =
∂hk(qk, xk)

∂xk
(26)

V1k
=
∂hk(qk, xk)
∂(ρp, θp)

; V2k
=
∂hk(qk, xk)

∂ψWR
(27)

E. Navigation Aid

When available, the robot position can be used to improve
the results. First, during the line detection phase, the sonar
points must be compounded with the robot position other-
wise, the acoustic image gets distorted due to the motion
of the robot during the scanning process. For this purpose,
all the sonar data is first referenced to a specific reference
frame before the Hough Transform is used (in conjunction
with the sonar model) to estimate the line. Second, during
the tracking, the sonar points are also compounded with
the the robot pose prior to the update of the line estimated
with the EKF. It is worth noting that both, the points and
the line, must be referenced to the same frame. Moreover,
since navigation data often drifts due to the dead reckoning
process, the reference frame must be changed periodically.
In case no navigation data is available which is normally the
case when an ROV is used, the robot must be static during
the line detection and moving smoothly when the tracking.
Navigation data plays a particularly important role in the
presence of strong perturbations since, in this case, the static
motion model for the line, expressed in the robot local frame,
does not hold anymore while still applicable in an external
global frame. Moreover, in this case, still it is possible to run
periodically the Hough based line detector to reset the EKF,
to avoid the drift of the tracking process.

A simple simulation is set up in MATLAB to exhaustively
test the proposed algorithms prior to real testing with the
AUV. For this purpose, synthetic data is generated for a
virtual pool corresponding to the water tank dimensions used
for field experiments

Fig. 5. Synthetic data displayed in {W}
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F. Robot Motion Model

Robot motion is simulated using a 3DOF (surge, sway and
yaw) constant velocity kinematic model with acceleration
noise:xy
ψ

W
k

=

xy
ψ

W
k−1

+RWR


uv
r

R
k−1

∆t+

wu̇wv̇
wṙ

R
k−1

∆t2

2


(28)

where {W} is world fixed frame located at the corner of
the water tank, {R} is the robot fixed frame and RWR is
the rotation matrix from {R} to {W}. The vector (x, y, ψ)W

corresponds to the robot pos in the world fixed frame while
(u, v, r)R and (wu̇, wv̇, wṙ)R are the robot velocities and
the acceleration noise respectively, both referenced to the
robot frame. The robot is initialized to be at a desired
position with some velocity. By changing the acceleration
noise it is possible to carry out experiments where the robot
remains static or it hovers around a specified spot at varying
velocities.

Fig. 6. Simulated Vs. Real environments

IV. SIMULATION ENVIRONMENT

A. Sonar Simulation

The sonar beam is simulated as a line, with its origin
in the transducer head, rotating at a certain speed to sweep
a sector scan, repetitively. The sonar points are computed
by the intersection between the sonar line and the walls of
the rectangular water tank. The points are then corrupted in
ρp, θp with Gaussian noise (Fig. 5).

V. RESULTS

In this section simulations as well as experiments using
ICTINEUAUV robot in the water tank of the Underwa-
ter Robotics Research Center (CIRS) of the universitat de
Girona are described. In both cases, results with and without
navigation aid are reported and discussed.

A. Simulations

Several simulations were carried out with synthetic data.
A representative one is reported here. During the experiment,
the robot was moving with an initial velocity (u, v, r)R =
(0.3cm/s,−0.4cm/s,−0.02rad/s)Rk and acceleration noise
(σu̇, σv̇, σṙ)Rk = (0.0008, 0.0008, 0.008)Rkm/s

2. Zero mean
Gaussian noise with variances σ2

ρ = (30cm)2 and σ2
θ =

(5deg)2 were used to perturb the theoretical sonar reading.
Fig. 7 and Fig. 8 show the tracking of the distance and
orientation of the wall in front of the AUV with and without

the use of navigation information, respectively. In both the
cases sonar-points and heading measurements are used for
update during the tracking. From these figures, it is obvious
that for both the cases the ground truth stays well within 2σ
bounds of the estimate. Although the tracking is smoother
in the case where navigation is used. On the other side,
the noise added in the range is significantly large (30cm).
Hence, if a 95% confidence level is used with such a noisy
data, spurious measurements are also used to update the
estimate which results in an erratic tracking behaviour. It
has been observed that reducing the confidence level down
to 60% makes the tracking smoother. At the same, for the
case without navigation, we cannot afford to have a very
low confidence as it reduces the number of updates and
hence discardes a lot sonar data which is the only means
of correcting the wall’s relative distance and orientation.

Fig. 7. Line Tracking with navigation. In red 2σ bounds of the tracked blue
line. Ground truth in green. (Synthetic Data, σrange = 30cm, σbearing =
5o, Sector Size=90o, robot in Motion, 95% confidence)

Fig. 8. Line Tracking without navigation. In red 2σ bounds of the
tracked blue line. Ground truth in green. (Synthetic Data, σrange = 30cm,
σbearing = 5o, Sector Size=90o, robot in Motion, 95% confidence)

B. Experiments

Short duration experiments were conducted where the
robot was facing a wall ≈ 4 − 5m away with slight
movements. The initial position of the wall in the robot frame
was manually measured and used as the ground truth.



Fig. 9. Real Data, with Navigation, 95% confidence, robot in slow motion
while facing a wall (at 90o orientation in {W})

As it is obvious from the Fig. 9, the tracking is very
smooth as compared to simulated data because the robot
movements are slower than those simulated and observed
sonar noise is also comparatively less than the synthetic
data noise. Moreover, the ground truth stays well within
the 2σ bounds. The ground truth in θ is more stable in the
bounds as compared to the simulated cases because in reality
the heading of the robot was more stable than that in the
simulations.

Fig. 10. Real Data, without Navigation, 95% confidence, robot in slow
motion while facing a wall (at 90o orientation in {W})

Using the data gathered with the same experiment but
using navigation information only to reference the ground
truth to the robot frame while avoiding its use for the wall
tracking (as the sonar data is not referenced to a specific
reference frame in the update part of the EKF) (Fig. 10),
still ground truth stays well within the 2σ bounds of the
estimate, more like the case with navigation with slightly
more distortions in the estimate after time step t=140. As a
consequence of not using navigation information, the change
in the ground truth in θ can be observed.

VI. CONCLUSIONS

In this work a method for detection and tracking of a
line feature in the robot fixed frame, with application to
dam wall inspection task, is developed. Depending on the
characteristics of the robot motion, tracking can be achieved
with or without navigation. If the robot moves fast or

suddenly, for instance, when affected by strong perturbations,
then navigation is necessary to avoid the motion induced
distortion. In such a case, since the position estimate accumu-
lates drift over time, the frame of reference must be changed
periodically to cancel the undesired drift effects over long
duration experiments. Nevertheless, if the robot motion is
smooth, the wall tracking can be achieved without knowing
the robot position. This is of particular interest when an ROV
is used instead of an AUV, since ROVs commonly do not
incorporate other navigation sensors than a heading sensor.
With no position information from the navigation devices,
the sonar data is the only source to extract relative position
information. Hence, in this case, the position estimate of
the wall with respect to the vehicle or vice versa is heavily
dependent on the accuracy of sonar data . Furthermore,
in this situation, the system cannot afford to discard a lot
of sonar data by using a very strict confidence level and
vehicle movements must be slow enough to allow the EKF
estimate to gradually evolve. Still, working within most of
these constraints is not very difficult. In fact, in scenarios
such as wall survey of a dam, slow movement of the vehicle
is a requirement of the inspection task. So, for such tasks,
the method of tracking without navigation is quite suitable.
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