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ON STABILITY OF FINITELY GENERATED SHIFT-INVARIANT SYSTEM S
MORTEN NIELSEN

ABSTRACT. We consider the problem of completely characterizing waesystem of integer
translates in a finitely generated shift-invariant subspaicL,(RRY) is stable in the sense that
rectangular partial sums for the system are norm convergéfat prove that a system of inte-
ger translates is stable lp(RY) precisely when its associated Gram matrix satisfies a deitab
Muckenhoup#, condition.

1. INTRODUCTION

A finitely generated shift-invariant (FSI) subspaced gfRY) is a subspac& c L,(RY) for
which there exists a finite familg of L,(RY)-functions such that

S=9(®) :=spaf¢(-—Kk): ¢ € d ke zd}.

FSI subspaces are used in several applications. Waveldtstaer multi-scale methods are
based on FSI subspaces [4, 5, 14], and FSI subspaces playartamt role in multivariate ap-
proximation theory such as spline approximation [8] andrapiation with radial basis func-
tions [9, 19]. The fundamental structure of FSI spaces has baudied in a number of papers,
see for example [1, 6,7, 20]. Let us also mention the claksesalts on translates of functions
by Kolmogoroff [16] and Helson [13].

For many applications it is useful to have a stable genayatn forS. Given the structure @,
it is natural to consider generating sets of integer traeslarhat is, a system with the following
structure,

(1.1) {Y(-—K):peWwkezd,

whereW = {,...,n} C La(RY) is a finite subset. Often we také = ®, but ¥ may be
different from®, and the two sets need not have the same cardinality but vag/slkequire that
S¥) = S(P). o o |

We focus on the case where (1.1) has a unique bi-orthogos&myinS, i.e., there exist
{gf(”} C Ssuch that

o W(—K)=dpadj W Pewjkez’.
For such systems, we can define the “rectangular”’ partialgpenators by

(1.2) W= Y (fghw(—k),

PeWkezd: k| <N;

for f € SandN = (Ng,Na,...,Ng) € N, with Ng := NU {0}.

Key words and phrasesShift-invariant space, Schauder basis, integer trarsslatector Hunt-Muckenhoupt-
Wheeden theorem, Muckenhoupt condition.
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The main result of this paper, which is stated in Theorem &l@va completely characterizes
when we have norm convergence

(1.3) Inf—f, as min\; -+, forall f € S(W).
|

For example, whenever (1.1) forms a Riesz basisSt&), (1.3) clearly holds true. However,
as Theorem 1.2 will show, we can have convergence in much gemeral cases where (1.1)
fails to be a Riesz basis. It is known that Riesz basis pragsedf (1.1) can be completely
characterized in terms of the Gram matrix for the sys#énin fact, (1.1) forms a Riesz basis for
S(W) precisely when the spectrum of the Gram matrix for the systembounded and bounded
away from zero, see [7]. Therefore, it is only natural to exjleat the convergence (1.3) can be
characterized in terms of the Gram matrix ¥r

There is, in fact, ongeryrestricted case where the convergence (1.3) has alreadycheae
acterized. It was proved in [17] that in the univariate case,d = 1) with one generator (i.e.,
N = 1), (1.3) holds precisely when the Gram matrix (which is dadainction in this case) is a
Muckenhoupt®, weight. The characterization basically boils down to anliappon of the cele-
brated Hunt-Muckenhoupt-Wheeden Theorem [15]. The mstticase indicates that some type
of Muckenhoupt condition on the Gram matrix is needed in ptdebtain the wanted conver-
gence characterization in the general case. We introdecedbded generalized Muckenhoupt
condition in Definition 1.1 below.

Let us now state the main result of this paper preciselyt,Rirs introduce some notation. We
define the Fourier transform by

(1.4) (&)= fe?™sdx  fela(RY).

R
The Gram matrix fol = {(n,..., YN} is the Hermitian positive semi-definitd x N-matrix
W :=W(W) given by

AN
(1.5) W(w):( S ¢i(.—k),¢j(-_k)) |

kezd i,j=1

The Gram matrix is an example of a matrix weight. In general say thaw : T¢ — CN*N,
T9 = [-1/2,1/2)9, is a matrix weight if it is a measurable function whose valaee positive
semi-definiteN x N-matrices.

To deal with the problem at hand, we introduce the followingpdass of matrix weights.
Some examples of such weights can be found in Section 5.

Definition 1.1. Let W be aN x N matrix weight onT9, i.e., a periodic measurable function
defined orT® whose values are positive semi-defirite« N matrices. We say th&V satisfies
the Muckenhoupt produéty;-matrix-condition provided that

1 12 /4 9 1/2
(ﬁ/RW"*‘) (ﬁ/RW df)

where the sup is over all rectanglRs= 11 x |, x - - - x I§ € RY. The collection of all such weights
is denotedPAy(d).

(1.6) sup{

R

< 0o,
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As far as we know, this is the first time that a product Muckergi@\,-condition for matrix
weights has been considered. However, non-product Muckgsitconditions have been con-
sidered by several authors in the matrix setting. The maixxondition onT was put into
prominence by Treil and Volberg in their seminal papers §23,where they generalized the
Hunt-Muckenhoupt-Wheeden theorem to vector-valued fanst More recently, matrix Muck-
enhoupt conditions o4, where the sup in (1.6) is taken over cubes and not rectariuges
been considered in [10, 11, 21] in order to study vectore@lsingular integral operators and to
construct vector-valued weighted Besov spaces. The ptégumondition for scalar weights has
a long history, see [3] and references therein. SchaudesliasGabor systems were character-
ized in terms of scalai, product conditions by Heil and Powell in [12].

We can now state the main result of this paper.

Theorem 1.2.Let SW) be a FSI space in4(RY) for whichW has a bi-orthogonal system. Then
the following conditions are equivalent.

(@) Tnf — f, asminN; — +oo, for all f € S(V)
(b) {TN}NeNg is a uniformly bounded family of operators on S

(c) The Gram matrix WW) is in the Muckenhoupt clag®,(d).

It is completely straightforward to verify that conditio(e and (b) are equivalentin Theorem
1.2. The main difficulty is to prove that (b) and (c) are eqlew& This will follow directly from
Theorem 3.3, which will be proved in Section 3.

The structure of the paper is as follows. In Section 2 we aepthe connection between
FSI subspaces and weighted vector-valugdpaces, and we characterize when (1.1) has a bi-
orthogonal system is(¥). Section 3 is devoted to studying Fourier partial sum ojpesan
the vector-valued setting, which through the Fourier tiams gives an equivalent approach to
Theorem 1.2. The main result of Section 3 is Theorem 3.3 thvaisg vector-valued Hunt-
Muckenhoupt-Wheeden type result for rectangular partiais In Section 4 we consider an
application of Theorem 1.2 to the problem of obtaining Sclesbases for FSI spaces. It is
proved that providedV € PA,(d), then we can find an enumeration of the system (1.1) that
respects the rectangular partial sums considered in Thebr2 and turns (1.1) into a Schauder
basis for§W). Section 5 contains a number of examplesaf(d) weights and related FSI
subspaces. Finally, there is an appendix containing twbefriore technical proofs.

2. HNITELY GENERATED SHIFT INVARIANT SYSTEMS

In this Section we explore the connection between FSI suespand weighted vector-valued
Lo-spaces, and we characterize when (1.1) has a bi-orthoggsim inS(W). The main tool
to study expansions i§(W) is the Fourier transform. As before, we assume that someingle
W= {yn,yn,...,¥n} has been imposed.

Following [7], we introduce the so-called bracket produeeg by

[f,0: T = Cix— ¥ f(x+kg(x+k),
kezd

for f,g € Lo(RY). With this setup, we have the fundamental identity

(21) <fvg>L2(Rd) = <fA7 g)Lz(Rd) = /]I‘d[ Avg]dfa fagae LZ(Rd)
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Let us now consider a finite expansionS(¥)

N
f=5 > cuxtb(x—k),
£=1kezd
relative to the system (1.1). An application of the Founiansform yields
N _ N
@2) (0= (3 e ™) =3 1@
2.2, 2

The periodic functions, are not necessarily uniquely determinedfyout we can nevertheless
calculate the norm of using the bracket product and (2.1). We form the vect@f[rg]g‘zl, and
we lettH denote the Hermitian transposerof\Ne obtain

@3) I = [ 1=, Z z BT () dE = [ T®) W(E)T(E)de,
whereW :=W(W) is the Hermitian positive semi-definité x N-matrix given by

(2.4) W(W) = ([Lﬂi,lﬁjl)mzr

W is known as the Grammian matrix associated wth Notice that the Cauchy-Schwarz in-
equality shows that each entry\ is contained irLy(T9) sinceW c Lo(RY).
Let us introduce the vector-valued weighted space

Lz(']l‘d;W) {f Td — N - Hf|||_2TdW / |W1/2 |2d§<oo}

We need to factorize over” := {g: [|g]|_, (1w = O} in order to turnL,(T9; W) into a Hilbert
space. However, it should be noted that we will mainly uss #ipiace in the case whanéis
positive a.e. For such weights” only contains vector functions that vanish a.e.

The analysis so-far shows that the miapL,(T% W) — (W) given by

(2.5) U(r) = (ﬁlu(f)@)v

is an isometric isomorphism betwebp(T9; W) andS(W).
Of special interest to our analysis is the trigonometricesys

27
{e eJ}kGZdJ 1,..,N>

wheree;, j =1,...,N, is the standard basis f&\. Notice that) (€% ;) = y; (- — k). Below
we will use the isomorphisid to study metric properties of the shift invariant systeni)in
terms of equivalent metric properties & 2™ <ej}, za ;_y y in Lo(TW).

We begin by characterizing when (1.1) has a unique bi-odhabsystem ir§5(W¥). This turns
out to be exactly whe—1 € Ly, giving an extension of the scalar result obtained in [17¢ W
have the following proposition.

Proposition 2.1. Let SW), W = {{x, ..., Yn}, be a FSI space. The sequence
(- —k)kezd j=1,...,N}
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has a bi-orthogonal sequence if\) if and only if W is invertible a.e. and W e L1 (T9; CN*N)
(in particular, W is strictly positive definite a.e.). If this the case, the unique dual element to
Yi(- —K) is given by

(2.6) U(e 2™ iwle),  kezd,
where U is defined b2.5).

Proof. It suffices to study the systefie 2™ <ej}, ;a iy in Lo(T%W). SupposeV— €
L1(TY). We claim thaie~2™k-$W1g; is the dual functional te~2"k ¢ e;. Notice that

||e—2mk'fW—1ej HEQ('JI‘d;W) = [[[‘d |e_2mk'é|29}FW_1(6)W(5)W_1(5)EJ dé

= | W15 <,

soe 2kSW—le; € Lo(T9;W). Moreover, fork, k' € Z9 andj, j’ € {1,2,...,N},

(&M ey, MW ey ) oy = [ M WIHEW(E)e dé

Td

=, k) Cel e dE
= 5j7j/a<7k/.

Conversely, le{b; k} C Lo(T%;W) be the unique dual system {e-2"k¢g;}. Thus,

(e 2™ S ey, bj )y raw) = /Td bj k(&) W(&)ey e 24 dé
= 5j7j/d(7k/.

Notice thatb; x(&)"W(&)ej € L1(TY) sincebj k(&) € Lo(T%W) andW € L1(T9). The Fourier
transform is injective o1 (T9) so we conclude that for a.&.c TY,

bj (&)W (E) =M e], =12 N.
It follows thatW has full rank a.e., and we may solve f to get
bj k(&) = &M WH(E)ey.
We putk = 0, and obtain

0> y|b,-,o||f2(Td;W):/Tde}w—l(f)ej d&,  j=12,...N.

Hence tracBN 1) € L1(T9). Recall that for a positivél x N-matrix A, tracdA) < [|A < N-
tracgA), so

-1 - -1 o
[, IWHI(€)0g = [ tracew ) (§)dé < e
O

We conclude this section by using the mao translate the problem of studying the rectan-
gular partial sum operators given by (1.2) to an equivalesiblem for rectangular trigonometric
partial sums irLo(T9;W).
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For any FSI subspac&W), W = {¢x,...,Yn}, for whichW(W)~1 e L1(T9), we can define
the partial sum operators, fére Lo(T9;W),
N . .
NT = <T,e_zmk'gw_lej>L2(Td;W)e_2mk’€ej
=Lk KN,
A 2k 2mik
(2.7) => (1,672 %)) paq € ™ Ay,
=Lk KN,

We have the following corollary to Proposition 2.1.

Corollary 2.2. Let W), W = {¢xn, ..., Un}, be a FSI space for which YW) 1 € L1(T9). For
anyN € N4, we have

(2.8) SNl (e w)— Loy = TN L rd) Ly ra) -

Proof. Let f € (W) with f = 3}, 7. Recall that (1) = f andU (e-2<¢gy) = (- — k).
We now use (2.6) to obtain
N
VCIEDY (T,e 2 W ey) ay U (e 2™ 4 gy)
J=1k [k <N;
N . .
=3 (UT,U (e 2™ W tey)) oyl (€2 Cey) =Ty .
J=1k[ki[<N;

This clearly implies that|S\|TH|_2(Td;W) = ||TNfH|_2(]Rd)’ with ||T||L2(’]I‘d;W) = HfHLZ(Rd)’ so (2.8)
follows. O

3. ON A VECTOR HUNT-MUCKENHOUPTWHEEDEN PRODUCT THEOREM

In this section we study boundedness properties of linearadprs on vector-valued spaces.
In particular, we are interested in characterizing the mateightsW such that the partial sum
operators given by (2.7) on the spaqud;W) are uniformly bounded. A complete characteri-
zation of such matrix weights is given by Theorem 3.3 below.

Let us consider a linear operatdron L,(T%). We may applyT to functionsf taking values
in CN by letting it act separately on each coordinate functiamn, i.

(3.1) (Tf)j=Tf, j=21,2,...N,

In caseT is a (singular) integral operator with scalar kergk,y), the lifting of T to vector-
valued functions simply corresponds to multiplying theri@S(x, y) by theN x N-identity ma-
trix.

A fundamental problem is to characterize the matrix weigtitsT4 — CN*N for which cer-
tain families of singular integral operators extend to kieohoperators on the weighted space
Lo(T9;W). The vector-valued Hilbert transform was studied in theisairpaper by Treil and
Volberg [24], and this was later generalized to other tydesrmyular integral operators by Gold-
berg [11].

Let us state the result by Treil and Volberg in details, sineell be essential for the proof
of Theorem 3.3. LeW be aN x N matrix weight onT. We say thatV satisfies the regular
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(periodic) Muckenhoup#,-condition if

1/2

(i/st> (1/W—1d5)
1 1

where the sup is over all intervalls— R. The collection of all such weights is denotéd(T).

Also, notice that\(T) = PA»(1).
The Hilbert transfornH is defined orlLy(T) by

H(F)(x) 1= p.v./T £(t) cot( m(x—1)) dt.

We lift H using (3.1) to a linear operator &a(T;W) for anyN x N matrix weightW onT. The
fundamental result by Treil and Volberg [24], see also [&3the following.

1/2
< oo,

(3.2 su%
|

Theorem 3.1( [24]). Let W: T — CN*N pe a matrix weight. Then the Hilbert transform is
bounded on k(T;W) if and only if We Ax(T).

We recall that the univariate Dirichlet kerrig) is given by

sin2r(N+1/2)t
sinmt

(3.3) D(t) = N> 1,

Y

and forf € Lp(T),

~

N
=3 eZ"‘k_f*DN_/f )Dn(- —t)dt.

We have the following immediate corollary to Theorem 3.1.

Corollary 3.2. Let W: T — CN*N pe a matrix weight imA,. Then the partial sum operators
f — f x Dy are uniformly bounded onJ(T;W).

Proof. We letP, denote the Riesz projection oritts for f € L(T;W). Recall thaH = —iP, +
i(1 —Py), soitfollows immediately tha®, is bounded oh(T;W) sinceH is bounded according
to Theorem 3.1. Notice thdt— fe?™" is a unitary mapping oh(T;W), just as in the scalar
case. Then we observe that

fxDy =™ (I — P )e M@ p,_(£e2N)
and the result follows. O

We can now state the main result of this paper. Also noticeGbeollary 2.2 and Theorem 3.3
give a direct proof of Theorem 1.2.

Theorem 3.3.Let W: T9 — CN*N pe a matrix weight with WV 1 € Ly oc(RY). Then the
rectangular partial sum operators

sf()=§  fe?™ s NeNg,
keZd: k| <N;

are uniformly bounded on(T9; W) if and only if We PA(d).
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The proof of Theorem 3.3 is based on Corollary 3.2 and theviolg two lemmata, whose
proof can be found in Appendix A. Part (a) of Lemma 3.4 give®guivalent formulation of
the productAP(d) condition in terms of integrals of certain non-negativediions. This type of
condition was first considered by S. Roudenko [21] for magjxwveights orRY associated with
cubes (and not rectangles as is needed for our results).

LetW : T9 — CN*N be a matrix weight withV, W= € Ly joc(RY). For convenience, we define
the the following quantity for any rectangiec R¢,

1 12, 4 LV?
(e fowee) (g e ) |

We have the following lemma.

(3.4) M(RW) :=

Lemma 3.4. Let W: T9 — CN*N be a matrix weight with VW1 € Ly joc(RY). For a rectangle
R c RY, we define MR, W) by (3.4). Then the following holds.

(a) We have uniformly in R,
1 _
MRW)?= 2 [ [ IWH2(E)W2(n)|Pdnde
IRI*JrJR
(b) There exists a universal constant-d such that for rectangles R R c RY,

M(R,W) < c:%:M(RW).
(c) Suppose W PA(d), then the univariate weighf; — W(¢), obtained by fixing the vari-
ableséy (k # j), is uniformly inAy(T).

Lemma 3.5 estimates the norm of integral operators0fi®; W) with very localized kernels.
This result for non-produch,-weights was proved by Goldberg [11].

Lemma 3.5. Suppose SE€) = [« S(&,n)f(n)dn is an integral operator with a scalar kernel
S(&,n) that satisfie§S(&,n)| < a|R|~1xrxr for some bounded rectangle ®RRY. Then the
norm of S on k(T9;W) is at most d a - M(R W), with M(R,W) given by(3.4). Moreover, the
kernel|R|~1xr % xr induces an operator with norm exactly(® W) on Ly(T9;W).

The proofs of Lemma 3.4 and Lemma 3.5 can be found in Appendi¥va can now give a
proof of Theorem 3.3.

Proof of Theorem 3.3First we assume th& € PA,(d). The casel = 1 is exactly the con-
clusion of Corollary 3.2. Next we consider the cake 2; the reader can easily verify that the
argument below generalizes to ahy 3.

According to Lemma 3.4.(C\MVg, :=W(¢&1,-) andWg, :=W(-, &2) satisfy uniform Mucken-
houpt Az-conditions onT. Pick anyf € Ly(T?,W). By Fubini's theorem,fs, := f(&1,-) €
Lo(T,W;,) and fg, = (-, &2) € Lo(T,Ws,) for a.e.[&1] and[&2], respectively.

Let Dy be the univariate Dirichlet kernel given by (3.3), and we mefi

T = Dy # fo, ::/ fo (ODN(-—t)dt, T := Dy fy, ::/ fe, (t)Dy (- — t)dit.
T T
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Notice thatTym f = T4TZ f. We apply Corollary 3.2 to obtain
/ W, (&) T fe, (£2)PdE2 < C / W& T (E2)PdE aeléyl
T T

An integration yields,

@5) [ [ WY &) T (8 E)PdEde <C [ [ IWR(E, )16 ) 2dEads
TJT TJT

Similarly,

T T ey = [ [ W00, &) TR (80, 82) Pade
<c /T /T WY2(E, &) TR (21, &) [2dE1dE,
<c? /T /T WY2(&;, &) f2dE;dEs.

It follows that{TN}NeNg are uniformly bounded ohy(T?;W).

Now, let us assume that the operat&{)ﬂ'&}NeNg are uniformly bounded oh,(T%;W). We
have to prove thavl(R,W) given by (3.4) is uniformly bounded iR.

Let us first recall some elementary facts about the univaiatichlet kernel given by (3.3).
The kernelDy is real and||Dn|l« = 2N+ 1 = Dn(0). By Bernstein’s inequalityHD{\]H00 <

(2N 4 1)%. We can thus find an integét (independent oN) such that fort € [— KlN KN] we

haveD(t) > (1— )| |Dn ]l

Let a rectangldR =11 x I2 x --- x I4 be given. Forj =1,2,...,d, with |I;| >~2iK, we define
N; = 0 and replacé; with [-1/2,1/2), and obtain a possibly larger rectangte By Lemma
3.4.(b) there is a universal consta:rﬂuch thaM (R W) > cM(R,W) since|R| < (2K)9|R|. Next,
foreachj =1,2,...,d with [Ij| < 2K’ we choose an integétj > 1 such that

1 1 1 1
3.6
(3.6 4K NJ—|J|—2K N;’
: _ 1
Notice that fort,u € I, we havet —uc lj—Ij C [ KNJ  RN; ) SO
1\ vd
(3.7) Dn; (t—u) > (1—%) [[DN; [[oo-
For notational convenience we g := 1, and form the product kernel
d
= I_l DNj(Ej)‘
=1

The plan of attack is to use the simple fact that> xgTn(Xgf) is uniformly bounded in both
RandN € Ng. We notice thatf — xgTn(xgf) has integral kernel

S(&,n) = xg(n)Xxa(&)Dn(n —&).

We wish to estimate the operator normS®ffrom below. For that purpose we first consider the
operator with kernel

S(&,n):=S(&,n) —%(E,n) = [IDnlloXa(€) Xa(n) — X&(&) Xa(n)Dn(E —n).



ON STABILITY OF FINITELY GENERATED SHIFT-INVARIANT SYSTEMS 10

Notice that the estimate (3.7) implies the following sizBreate

(€, m)| = [IIDNlleoxe() X(1) — X&(&)Xa(m)DN(E — 1))
IO les
< g XRE)Xa(M)
_ Rl IIDn]fes
According to Lemma 3.5, the kernginduces an operator of norm at mgsR | - || D ||M (R,W)
on Lz(Td;Wz. At the same time, Lemma 3.5 shows that the operator withek&ité, n) =
IR/|IDNJlw - R 2xa(&) xa(n) has norm exactyR)| - ||Dn/|M(R,W) onLy(T%;W). The triangle
inequality for operator norms implies that

Yxa(&)xaln)

1 -~ ~ ~ ~
IR IDn[leM(RW) 2 [[S = S| 2 [IS] - IS]]| = IR IDnl«M(R W) — || S]l,

s0(|S|| > 3|R|- [|Dnll«M(R,W). Moreover, by (3.6), we see thi| - |Dnl| > (4K)~9, so we
may conclude that

M(RW) < CM(RW)
< 2C(4K)%|| S|
=2C(4K)*  sup  [IXRTNOXRT) Ly (raw)

” f ”Lz(Td;W):l

<C'  sup [ Tnflliyeraw)

||f|||_2<'[[*d;w>:1
< C//.
with constanC” independent oR. Thus, we can finally conclude that € PA,(d). O

Remark3.6. As the reader may notice, modulo the complications addedéyéctor-valued
setup, the “kernel localization” technique used to prowedhly if part of Theorem 3.3 is in fact
very similar to the original technique introduced by Hunti®kenhoupt, and Wheeden in [15].

4. SCHAUDER BASES FORFSI SPACES

In this section, we consider an application of Theorem 1tBégroblem of obtaining Schauder
bases for an FSI spa&W). Let us first recall some elementary facts about Schaudesbas
Hilbert space. We refer to [22] for more details.

A family B = {x,: n€ N} of vectors in a Hilbert spadd is a Schauder basis féf if for every
x € H there exists a unique sequer@g, := an(x) : n € N} of scalars such that

N
lim OnXn = X

N—eo nzl

in the norm topology oH. The unique choice of scalars implies that- an(x) is a linear
functional, for everyn € N. Furthermore, for every € N, there exists a unique vectgy such
thatan(x) = (X,yn). It follows that

(4.1) (Xm,¥n) =Omn, mMneN.
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A pair of sequence${un}nen, {Vn}nen) in H is abi-orthogonal systenif (Um,Vn) = dmn,
m,n € N. We say tha{ v, }nen is adual sequencd {un}nery, and vice versa.

A dual sequence is not necessarily uniquely defined. In fagt,unique if and only if the
original sequence is completelih (i.e., if the span of the original sequence is dendd)n

SupposeB = {x, : n € N} is complete, and has a unique dual sequefygé. ThenB is a
Schauder basis fot if and only if the partial sum operato8(x) = SN_; (X, yn) X, are uniformly
bounded orH.

4.1. A particular enumeration of Z?. Expansions relative to Schauder bases need not converge
unconditionally, and the ordering of the Schauder basisiefés becomes crucial. To study
Schauder basis properties of (1.1), we therefore first hawapose an ordering of the system
(1.1) that is compatible with the result on rectangulariphsums given by Theorem 1.2.

Our starting point is to consider enumeration&8f i.e., bijective maps : N — Z9. In order
not to cloud the picture by complicated notation, we restrigr attention to enumerations @f
andZ2. ForZ, we simply pick the enumeratiom! given by

0,1,-1,2-2,...

Let A(1) := {o'}. Ford = 2, we follow Heil and Powell [12], and consider the followinkgss
of enumerations.

Definition 4.1. Let A(2) be the set containing all enumeratiofi;,n;)}{’; of 72 defined in
the following recursive manner.

(1) The initial termgky,ng) ... (ky, Ny, ) are either
(0,0),(1,0),(—1,0),...(A1,0),(—Aq1,0)
or
(0,0),(0,1),(0,-1),...,(0,By),(0,—By),
for some positive intege; or B;.
(2) If {(kj,nj)}]-]k:l has been constructed to be of the fofmAy, ..., A} x {—B,...,Bk}

for some non-negative integedg, By, then terms are added to either the top and bottom
or the left and right sides to obtain either the rectangle

{=A- - Ad X {=(Bx+1),....Bc+1}
or
{=(Act+1),.. A+ 1} x {=By, ..., By}
For example, terms would first be added to the left side ottase
(_(Ak+ 1)70)7 (_(Ak+1)71)7 (_<Ak+1)v _1>7' . 7(_(Ak+ 1)7Bk)7 (_(Ak+1)v _Bk)7
and likewise for the right side. Top and bottom proceed aywlsly.
Remark4.2 We leave it to the reader to verify that the above techniquebsageneralized to

obtain admissible enumerations@ft recursively as follows. We always start@GtThen at each
step in the process where a rectangle

R:{—Nl,...,Nl}><{—Nz,...,Nz}><--~><{—Nd,...,Nd}, Ni € Np,

has been reached, we proceed by only adding terms to two iogpfesces” ofR. The terms are
added to each of the two faces using an admissible enunecHtes 1.
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4.2. A characterization of Schauder bases for FSI subspacedNe considek! = {(, ..., N} C
Lo(RY), d € {1,2}, such that the system

(4.2) F={¢{.k-)=W( =K} kezd 1. N

.....

has a unique dual systefg(¢,k,-)} in S(W¥). Giveno € A(d), we lift o to an enumeratiod of
{1,2,...,N} x 29 defined as follows

(1,0(1)),(2,0(1),...,(N,0(1)),(1,0(2)),...,(N,a(2)),(L,0(3)),...

With this ordering, we define the partial sum operators
J

TP f:=35 (f.09(6(), - )w(a()),),  FesW).

j=1

We also need to consider the associated partial sum opevatgfT; W). Pute(, k) := e 2k gy,
and€(/,k) := U (e"2™¢W-1(&)gy), with U defined by (2.5). Then

J
1= 3 (TLEG()) e e(G()),  TeLa(TEW),
=1
satisfied) (§J1) =T f forU(1) = f € S(W).
It is now immediate from our general discussion of Schaudseb that the following condi-
tions are equivalent:

(i) The systent given by (4.2) is a Schauder basis ft’) with the ordering induced by
o € A\(d)
(i) The partial sum operatorB are uniformly bounded o§(¥).

With the notation in place, we can state our main result ora8adér bases for FSI subspaces.
The following result is a corollary of Theorem 1.2.

Corollary 4.3. We consider a FSI subspacgl§ in Ly(RY), withde {1,2}, and¥ = {¢n,..., YN}
Assume that the system given(By2) has a unique dual system ir{'8), and let WW) be the
Gram-matrix for. Then the following statements are equivalent

(@) SURcA(d)SUR [Ty || < oo

(b) W € AP(d).
Proof. (a) = (b): Ford =1, we notice thaT(CZ’jH)N = Tj, with Ty given by (1.2), so sug| T;|| <
o, andW € A,(T) by Theorem 1.2. We turn td = 2. Given a rectangle

R:{—Nl,...,N]_}X{—Nz,...,Nz}, N]_,N2€No,

we can use Definition 4.1 to construct an enumeratian/\(2) such thato({1,...,J}) = Rfor
someJ € N. ThenT{; = Ty, n,), @nd therefore sup n,>oll Ting,ny) [l < 0. HenceW € AP(2)
by Theorem 1.2.

(b) = (a@): Assume thatl = 2. Fix f € W), and picko € A(2). For anyJ we letN; be the
largest integeN; < J for which T,\‘,jf =Tk f, for some integerk, K. Now, by Theorem 1.2,

1T Fll ey < Tk Fll ey + (TS = Tok) fllmey < ClFllmay + (T = Tok) fll,re)-
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Hence, it suffices to bound the norm of the term
J

(4.3) (T7 =Tk f = ; (£,9(6()),-))w(6(i),)-

Jf

According to Definition 4.1, the sum (4.3) contains termg tieve been added to the top and
bottom or left and right side of an rectangle. The cases aaed in a similar fashion. For
definiteness, assume that (4.3) adds terms to the top ofd¢tengge.

We study the equivalent problemlia(T9;W). Pickt with U (1) = f, soU (SJ1) =T f. The
sum(SJ — S k)T contains to at mostl — 1 terms of the type

M . . . .
(4.4) ZM <T, e2mnfle2m (K—i—l)Ezej >e2mnéleZm(K+1)52ej 7
n=—

and at mosN — 1 terms of the type,

M-+1 ) ) ) )
(4.5) ZM (1, g27iNé1 27 (K+1)'fzej >e2mnflezm(|<+1)fzej ‘
Nn=—

We observe that, in general,
(1,2 S ey)e?™ gy (e < HWHLl(Td)HW_1||L1(’]I‘d)HTHLZ(Td;W)v

which follows from Holder’s inequality. We can thus use teréorce to estimate (4.5) in terms
of || 7[[,(rav) @and the norm of (4.4). We turn to the estimate of (4.4),

M . . . .
Z <Te—2m(K+1)EZ,eZmnflej>eZmnflej e27'ﬂ(K+1)Ez
n=—M

Lo(TdW)

M
_ z <Te—2ni(K+1)Ez’ezmnflej>92nin£1ej
n=—M

< Cllre 2Kt oy = ClITllL,eraw),

Lo(Td;W)

where we have used the uniform boundedness of the one-donahklilbert transform, see (3.5).
Collecting the estimates, we conclude that

1T = Te) Fllymay = 1(SF = SLk) Thyeroam) < ClITlL,rawy = Cll FllLma).
with C" independent of. The proof in the case = 1 is similar. O

Remarkd.4. As in Remark 4.2, we leave it to the reader to verify that threopof Corollary 4.3
can be generalized to arbitrathpy defining admissible enumerationsZs following the outline

in Remark 4.2. Theiib) = (a) in the proof of Corollary 4.3 can be used as the first step in an
induction argument od.

5. SOME EXAMPLES

In this final section, we consider some exampleB&$(d) weights, and some associated FSI
subspaces.
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5.1. The caseN = 1. First, we consider the scalar case= 1 with d arbitrary. Our prime
example in this case will be polynomials. LBt= {x € RY: |x| < 1}. Then for any polynomial
P(X) = 3 4 CaX? of degreen on RY, we have the following estimate by Ricci and Stein [18],

—H
(5.1) /B|P(x)|‘“dx§ cu7n<2|ca|) ,

for un < 1. The constant, , is uniform for all polynomials of degre@ We observe that for the
unit cubeR = {x: |x| < 1}, we have the trivial fact that~/?R c B, so using (5.1),

—H
—d/2 “Hy — 1/2\\|—H ~
d /R|P(x)| dx_/dl/zR|P(d X)| dxgcm(;]c(ﬂ) .

Also, [z|P(x)|[dxandy 4 |cq| are norms on the polynomials of degreend they are thus equiv-
alent as norms on a finite dimensional space. Hence,

(5.2) /R|P(x)|_“dx§ Cu7n(/R|P(x)|dx> s

Then we observe that the polynomials of degr@ee invariant under affine transformations, so it
follows that (5.2) holds for any rectangRonRY. From this, we deduce that for any polynomial
of degreen, |P|2is a (scalar)PA;(d) weight provided-1 < na< 1.

5.2. Arbitrary N and d. Let us expand the example of Section 5.1 to arbitfdryWWe notice
that given polynomial®;, P, ..., Py onRRY, the matrix

G:=diag(|PL|%,...,|PN|*™) € PAy(d)
provided—1 < degP)a; < 1fori=1,...,N. We letQ=[-1/2,1/2)¢, and definél = {1, ..., Un}

by

where{k;} is a collection of distinct integers 9. An easy calculation shows that(W) = G.
We thus have the norm convergence given by (1.3). Howevesglkctrum oV (W) is bounded
away from zero precisely when all polynomi&dshave no roots oQ. Thus, for this example,

(i) We always have the norm convergence given by (1.3)
(il) Ford = 1,2, we obtain Schauder bases &k) using Corollary 4.3

(iii) The system (1.1) is a Riesz basis f8¥) only when eact?, has no roots oQ.

ThatW (W) is diagonal is a reflection of the fact that the principal shifariant subspaces
S{yi}), i =1,2,...,N, are pairwise orthogonal, and one can argue that the exahopke not
truely belong in the matrix setting. We conclude this settiath a more “genuine” matrix
example ford = 1 andN = 2.

5.3. The cased = 1 and N = 2. Let us consider the following example by Bownik [2]. For
t € [-1/2,1/2) we define

10 cosa(t) —sina(t
Gty =U 1) [o b(t)]u(”’ U= |Gnatt) cosa() |

wherea (t) = sign(t)|t|%,b(t) = |t|¢, with —1 < £ < 1, andJ satisfying—26 < £ < 25. Then
G(t) € AP(1), see [2].
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Defineyn, Y € Lo(R) by

dn(&) =1/G11(t)X(0.1)
P2(&) = va(t) Xjo,1) + V2(V) X[1,2)»

where

et

with B : T — [0,2m) measurable such thgf/Gy 1(t)vi(t) = G12(t) = Go1(t). We notice that
this is always possible since d&ft) > 0. Then a direct calculation shows thHt= {(n, Y}
satisfiedV (W) = G(t).

The spectrum o6(t) is not bounded away from zero, so Corollary 4.3 gives us ampl@of
a conditional Schauder basis f8¥).
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APPENDIXA. PROOF OF SOME TECHNICAL LEMMAS

In this section we give the proof of Lemma 3.4 and Lemma 3.5 uisefirst consider some
general facts.
LetW : T9 — CN*N be a matrix weight. For any fixed vectee CY, we have

1 1
1
= ﬁ/R<W(’7)E,e>dn

, _ 1 1/2
(A1) _ AR, with Ag = <ﬁ/RW(n)dn) .

Similarly, we denote{|R|_1fRW‘l(n)dn)l/2 by A.

For self-adjoint operator& andB on CN, we have
(A.2) |AB]| = [[(AB)"|| = [[B*A"|| = [|BAY].

Also, for an orthonormal basig; } for C9, and any matrixA € C9*9,

d
(A.3) IAIZ< S |Ag? <d-[|A]%
=1
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Proof of Lemma 3.4For (a), we follow [21] and calculate, using (A.1), (A.2),cafA.3) repeat-
edly,

1
2 L W22 Pdnde
1
= R o Jo W2 mw2(E)|Pande

1 N
XW/R/RZ WY2(n)WY2(8 ey 2dndE
-+ Z AAW2( e Pt = o [ IABWH(E) e = o [ IWH2(E) A g

<& = /. z W28 Akl POE = 3 |Avite
| 3

= || ArA ||2 |ARARI12 = M(RW)2.

For (b), we notice that

MRW)? = [ [ IWH2(E) W2 Pdnd

|R|2 W2(E)W-2/2(n) 2
< e oW (m)|/?dndé

_IR?

|R|2M(R W)2

Now we turn to the proof of (c). It suffices to considlft) :=W(t, &, ..., &) for (&,..., &) €
T9-1 fixed. Given an interval C R, we formRe = I¢(&) x --- x 1¢(&g), wherelg(&)) is an
interval of length 2 centered af;. SinceW € PA(d) there exists a consta@{y independent of
| x Re such that

C2, > M(1 x Re,W)2 |R£|2/ / <|I|2//||W1/2t uW 1/2(wv)||2dtdw)dudv
Hence, by Lebesgue’s differentiation theorem,
Cir = lim M1 x Re,W)? IIIZ//H W20\~ 22 (w) |[2dtdws= M(1,W)2,
where the constants are independeritafd (&>, . ..,&y). HenceW is uniformly in Ay(T). O

We now give a proof of Lemma 3.5. The proof is an adaptationtetanique introduced by
Goldberg [11].
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Proof of Lemma 3.5We begin by estimating/’/?(&)Sf(&). Notice that

WHE)SHE)| = WHEE) [ SiEm)tndn
= | [ SE W@ t(myan

<alRI™ [ WH(E)f(n)dn

1/2
< a|R|—1( / HWl/z(é)W‘l/z(mszn) Nl yroany-

We have the estimate,

1/2

(/R||W1/2(E)W—1/2(n)||20|,7>1/2S (ji/R|W_1/2(n)W1/z(€)ej|2dn)

d 1/2
~ (3R w2
j=1
< dYZR M2 ARWY3(E)),
which yields the pointwise estimate
(A4) WH2(8)SH(E)| < d2a R~ ARWY(E)| - || Lyeraw)-

We use the estimate (A.4) fjif [, rayy) < 1 to obtain

1/2
15 e < 622 (IR [ 1AGWY2(6)| e
d 1/2
< dl/za(z R |W1/2(E)A§ej|2d€)
=1 R

1/2
< d¥2a ( Y |ARARe |2) < da||ARAR| = daM(R W).
J

For the second part, we use (A.1) to calculateltp@¥; W) norm of)(R|R|—1fR fdé,

Hilﬂ(%/,q 2d’7>1/2:|R|i1/2AR(/XR(E”(EME)’-

wH2(n) [ 1(&)ds
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AR( / XR(E)f(E)dE>’

| o€ e (21|

Hence,

L
—1[RY?

1 -
sup  |[xrIR] /Rfd(?HLg(Td;W)_ sup

||f||L2<Td;W):1 ||f|||_2(rﬂ~d;w

= sup sup
191l pagy =LecCe:{el=1

1
|R|1/2

sup [ xrArel
= o172 | XRARE| Ly (Td w1
ecCd:g=1 |R|1/2 2 )

= sup |ARARel =M(RW),

ecCd:|g=1

where we have used thiag(T9;W)* = Lo(T9;W~1) in the third equality. O
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