

Aalborg Universitet

Recursion vs. Replication in Simple Cryptographic Protocols

Huttel, Hans; Srba, Jiri

Published in:
Annual Conference on Current Trends in Theory and Practice of Informatics (SOFSEM'05)

Publication date:
2005

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Huttel, H., & Srba, J. (2005). Recursion vs. Replication in Simple Cryptographic Protocols. In Annual Conference
on Current Trends in Theory and Practice of Informatics (SOFSEM'05) (pp. 175-184)

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 09, 2024

https://vbn.aau.dk/en/publications/5333deb0-9fef-11db-8ed6-000ea68e967b

Recursion vs. Replication in Simple

Cryptographic Protocols

Hans Hüttel⋆ and Jǐŕı Srba⋆⋆

BRICS
⋆ ⋆ ⋆, Department of Computer Science, University of Aalborg
Fredrik Bajersvej 7B, 9220 Aalborg East, Denmark

Abstract. We use some recent techniques from process algebra to draw
several conclusions about the well studied class of ping-pong protocols
introduced by Dolev and Yao. In particular we show that all nontriv-
ial properties, including reachability and equivalence checking wrt. the
whole van Glabbeek’s spectrum, become undecidable for a very simple
recursive extension of the protocol. The result holds even if no nonde-
terministic choice operator is allowed. We also show that the extended
calculus is capable of an implicit description of the active intruder, in-
cluding full analysis and synthesis of messages in the sense of Amadio,
Lugiez and Vanackère. We conclude by showing that reachability analy-
sis for a replicative variant of the protocol becomes decidable.
Note: full proofs are available in [11].

1 Introduction

Process calculi have been suggested as a natural vehicle for reasoning about cryp-
tographic protocols. In [1], Abadi and Gordon introduced the spi-calculus and
described how properties such as secrecy and authenticity can be expressed via
notions of observational equivalence (like may-testing). Alternatively, security
questions have been studied using reachability analysis [3, 5, 9].

We provide a basic study of expressiveness and feasibility of cryptographic
protocols. We are interested in two verification approaches: reachability analy-
sis and equivalence (preorder) checking. In reachability analysis the question is
whether a certain (bad or good) configuration of the protocol is reachable from
a given initial one. In equivalence checking the question is whether a protocol
implementation is equivalent (e.g. bisimilar) to a given specification (optimal
behaviour). These verification strategies can be used even in the presence of an
active intruder (in the Dolev-Yao style), i.e., an agent with capabilities to listen
to any communication, to perform analysis and synthesis of communicated mes-
sages according to the actual knowledge of compromised keys, and to actively
participate in the protocol behaviour by transmitting new messages. This can

⋆ hans@cs.auc.dk
⋆⋆ srba@cs.auc.dk, supported in part by the GACR, grant No. 201/03/1161.

⋆ ⋆ ⋆
Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

be naturally implemented not only into the reachability analysis (see e.g. [4])
but also into the equivalence checking approach (see e.g. [10]).

A number of security properties are decidable for finite protocols [3, 14]. In
the case of an unbounded number of protocol configurations, the picture is more
complex. Durgin et al. showed in [8] that security properties are undecidable in
a restricted class of so-called bounded protocols (that still allows for infinitely
many reachable configurations). In [2] Amadio and Charatonik consider a lan-
guage of tail-recursive protocols with bounded encryption depth and name gener-
ation; they show that, whenever certain restrictions on decryption are violated,
one can encode two-counter machines in the process language. On the other
hand, Amadio, Lugiez and Vanackère show in [4] that the reachability problem
is in PTIME for a class of protocols with iteration.

In this paper we focus solely on ping-pong based behaviours of recursive and
replicative protocols (perhaps the simplest behaviour of all studied calculi) in
order to draw general conclusions about expressiveness and tractability of for-
mal verification of cryptographic protocols. The class of ping-pong protocols was
introduced in 1983 by Dolev and Yao [7]. The formalism deals with memory-less
protocols which may be subjected to arbitrarily long attacks. Here, the secrecy
of a finite ping-pong protocol can be decided in polynomial time. Later, Dolev,
Even and Karp found a cubic-time algorithm [6]. The class of protocols stud-
ied in [4] contains iterative ping-pong protocols and, as a consequence, secrecy
properties remain polynomially decidable even in this case.

In the present paper we continue our study of recursive and replicative ex-
tensions of ping-pong protocols. In [12] we showed that the recursive extension
of the calculus is Turing powerful, however, the nondeterministic choice operator
appeared to be essential in the construction. The question whether the calculus
is Turing powerful even without any explicit way to define nondeterministic pro-
cesses was left open. Here we present a radically new reduction from multi-stack
automata and strengthen the undecidability results to hold even for protocols
without nondeterministic choice. We prove, in particular, that both reachabil-
ity and equivalence checking for all equivalences and preorders between trace
equivalence/preorder and isomorphism of labelled transition systems (which in-
cludes all equivalences and preorders from van Glabbeek’s spectrum [15]) become
undecidable. These results are of general importance because they prove the im-
possibility of automated verification for essentially all recursive cryptographic
protocols capable of at least the ping-pong behaviour.

In the initial study from [12], the question of active attacks on the protocol
was not dealt with. We shall demonstrate that a complete notion of the active
intruder (including analysis and synthesis of messages in the sense of Amadio,
Lugiez and Vanackère [4]) can be explicitly encoded into our formalism.

Finally, we study a replicative variant of the calculus. Surprisingly, such a
calculus becomes decidable, at least with regard to reachability analysis. We use
a very recent result from process algebra (decidability of reachability for weak
process rewrite systems by Křet́ınský, Řehák and Strejček [13]) in order to derive
the result.

2 Basic definitions

2.1 Labelled transition systems with label abstraction

In order to provide a uniform framework for our study of ping-pong protocols,
we define their semantics by means of labelled transition systems. A labelled
transition system (LTS) is a triple T = (S,Act,−→) where S is a set of states
(or processes), Act is a set of labels (or actions), and −→⊆ S × Act × S is a

transition relation, written α
a

−→ β, for (α, a, β) ∈−→. As usual we extend the
transition relation to the elements of Act

∗. We also write α −→∗ β, whenever
α

w
−→ β for some w ∈ Act

∗.
The idea is that the states represent global configurations of a given proto-

col and the transitions describe the information flow. Labels on the transitions
moreover represent the messages (both plain-text and cipher-text) which are
being communicated during the state changes.

The explicit possibility to observe the full content of messages is sometimes
not very realistic; it means that an external observer of such a system can e.g.
distinguish between two different messages encrypted by the same encryption
key, without the actual knowledge of the key.

In order to restrict capabilities of the observer we introduce a so called label
abstraction function φ : Act 7→ Act. Given a LTS T = (S,Act,−→T) and a

label abstraction function φ we define a new LTS Tφ
def
= (S,Act,−→Tφ

) where

α
φ(a)
−→Tφ

β iff α
a

−→T β for all α, β ∈ S and a ∈ Act. We call Tφ a labelled
transition system with label abstraction.

Let us now focus on the messages (actions). Assume a given set of encryption
keys K. The set of all messages over K is given by the following abstract syntax

m ::= k | k · m

where k ranges over K. Hence every element of the set K is a (plain-text) message
and if m is a message then k · m is a (cipher-text) message (meaning that the
message m is encrypted by the key k). Given a message k1 · k2 · · · kn over K we
usually1 write it only as a word k1k2 · · · kn from K∗. Note that kn is the plain-
text part of the message and the outermost encryption key is always on the left
(k1 in our case). In what follows we shall identify the set of messages and K∗,
and we denote the extra element of K∗ consisting of the empty sequence of keys
by ǫ.

The level of abstraction we may select depends on the particular studied
property we are interested in. Nevertheless, it seems reasonable to require at
least the possibility to distinguish between plain-text and cipher-text messages.
We say that a label abstraction function φ is reasonable iff φ(k) 6= φ(k′w) for all
k, k′ ∈ K and w ∈ K+.

1 In our previous work on ping-pong protocols [12] we denoted a message m encrypted
by a key k as {m}k. We changed the notation in order to improve the clarity of the
proofs. In particular, when messages like k1k2 · · · kn are used, the previous syntax
described the keys in a reversed order, which was technically inconvenient.

2.2 A calculus of recursive ping-pong protocols

We shall now define a calculus which captures exactly the class of ping-pong
protocols by Dolev and Yao [7] extended (in a straightforward manner) with
recursive definitions.

Let K be a set of encryption keys. A specification of a recursive ping-pong is
a finite set of process definitions ∆ such that for every process constant P (from
a given set Const) the set ∆ contains exactly one process definition of the form

P
def
=

∑

i1∈I1

vi1 ⊲ . wi1⊲.Pi1 +
∑

i2∈I2

vi2 .Pi2 +
∑

i3∈I3

wi3 .Pi3

where I1, I2 and I3 are finite sets of indices such that I1 ∪ I2 ∪ I3 6= ∅, and
vi1 , vi2 , wi1 and wi3 are messages (belong to K∗) for all i1 ∈ I1, i2 ∈ I2 and
i3 ∈ I3, and Pi ∈ Const ∪ {0} for all i ∈ I1 ∪ I2 ∪ I3 such that 0 is a special
constant called the empty process. We moreover require that vi2 and wi3 for all
i2 ∈ I2 and i3 ∈ I3 are different from the empty message ǫ. (Observe that any
specification ∆ contains only finitely many keys.)

Summands continuing in the empty process constant 0 will be written with-
out the 0 symbol and process definitions will often be written in their unfolded
form using the nondeterministic choice operator ‘+’. An example of a process

definition is e.g. P
def
= k1⊲ . k2⊲.P1 + k1⊲ . k3⊲ + k1k2.P1 + k1k1 + k1k2.P2.

The intuition is that each summand of the form vi1 ⊲ . wi1⊲.Pi1 can receive
a message encrypted by a sequence vi1 of outermost keys, decrypt the message
using these keys, send it out encrypted by the sequence of keys wi1 , and finally
behave as the process constant Pi1 . The symbol ⊲ stands for the rest of the
message after decrypting it with the key sequence vi1 . This describes a standard
ping-pong behaviour of the process. (Note that the symbol ⊲ is equivalent to
our {x} notation from [12]).

In addition to this we may have summands of the forms vi2 .Pi2 and wi3 .Pi3 ,
meaning simply that a message is received and forgotten or unconditionally
transmitted, respectively. This is a small addition to the calculus we presented
in [12] in order to allow for discarding of old messages and generation of new
messages. These two features were not available in the earlier version of the
calculus but they appear to be technically convenient when modeling an explicit
intruder and for strengthening the positive decidability results in Section 5.
Nevertheless, the undecidability results presented in Section 3 are valid even
without this extension since only the standard ping-pong behaviour is used in
the constructions. A feature very similar to the forgetful input operation can be
also found in [4].

A configuration of a ping-pong protocol specification ∆ is a parallel compo-
sition of process constants, possibly preceded by output messages. Formally the
set Conf of configurations is given by the following abstract syntax

C ::= 0 | P | w.P | C ‖ C

where 0 is the empty configuration, P ∈ Const ∪ {0} ranges over process cons-
tants including the empty process, w ∈ K∗ ranges over the set of messages, and
‘‖’ is the operator of parallel composition.

We introduce a structural congruence relation ≡ which identifies configura-
tions that represent the same state of the protocol. The relation ≡ is defined as
the least congruence over configurations (≡⊆ Conf× Conf) such that (Conf, ‖,0)
is a commutative monoid and ǫ.P ≡ P for all P ∈ Const. In what follows we
shall identify configurations up to structural congruence.

Remark 1. We let ǫ.P ≡ P because the empty message should never be com-
municated. This means that when a prefix like k⊲ . ⊲.P receives a plain-text
message k and tries to output ǫ.P , it simply continues as the process P .

We shall now define the semantics of ping-pong protocols in terms of labelled
transition systems. We define a set ConfS ⊆ Conf consisting of all configurations
that do not contain the operator of parallel composition and call these sim-
ple configurations. We also define two sets In(C, m),Out(C, m) ⊆ ConfS for all
C ∈ ConfS and m ∈ K+. The intuition is that In(C, m) (Out(C, m)) contains
all configurations which can be reached from the simple configuration C after
receiving (resp. outputting) the message m from (to) the environment. Formally,
In(C, m) and Out(C, m) are the smallest sets which satisfy:

– Q ∈ In(P, m) whenever P ∈ Const and m.Q is a summand of P

– wα.Q ∈ In(P, m) whenever P ∈ Const and v⊲ . w⊲.Q is a summand of P
such that m = vα

– P ∈ Out(m.P, m) whenever P ∈ Const ∪ {0}

– Q ∈ Out(P, m) whenever P ∈ Const and m.Q is a summand of P .

A given protocol specification ∆ determines a labelled transition system

T (∆)
def
= (S,Act,−→) where the states are configurations of the protocol mod-

ulo the structural congruence (S
def
= Conf/≡), the set of labels (actions) is the

set of messages that can be communicated between the agents of the protocol

(Act
def
= K+), and the transition relation −→ is given by the following SOS rule

(recall that ‘‖’ is commutative).

m ∈ K+ C1, C2 ∈ ConfS C′
1 ∈ Out(C1, m) C′

2 ∈ In(C2, m)

C1 ‖ C2 ‖ C
m
−→ C′

1 ‖ C′
2 ‖ C

This means that (in the context C) two simple configurations (agents) C1

and C2 can communicate a message m in such a way that C1 outputs m and
becomes C′

1 while C2 receives the message m and becomes C′
2.

For further discussion and examples of recursive ping-pong protocols we refer
the reader to [12].

2.3 Reachability and behavioural equivalences

One of the problems that is usually studied is that of reachability analysis: given
two configurations C1, C2 ∈ Conf we ask whether C2 is reachable from C1, i.e.,
if C1 −→∗ C2. In this case the set of labels is irrelevant.

As the semantics of our calculus is given in terms of labelled transition sys-
tems (together with an appropriate label abstraction function), we can also study
the equivalence checking problems. Given some behavioural equivalence or pre-
order ↔ from van Glabbeek’s spectrum [15] (e.g. strong bisimilarity or trace,
failure and simulation equivalences/preorders just to mention a few) and two
configurations C1, C2 ∈ Conf of a protocol specification ∆, the question is to
decide whether C1 and C2 are ↔-equivalent (or ↔-preorder related) in T (∆),
i.e., whether C1 ↔ C2.

3 Recursive ping-pong protocols without explicit choice

In this section we strengthen the undecidability result from [12] and show that
the reachability and equivalence checking problems are undecidable for ping-
pong protocols without an explicit operator of nondeterminism and using clas-
sical ping-pong behaviour only, i.e., for protocols without any occurrence of

the choice operator ‘+’ and where every defining equation is of the form P
def
=

v⊲ . w⊲.P ′ such that P ′ ∈ Const.
We moreover show that the negative results apply to all behavioural equiv-

alences and preorders between trace equivalence/preorder and isomorphism of
LTS (which preserves labelling) with regard to all reasonable label abstraction
functions as defined in Section 2.

These results are achieved by showing that recursive ping-pong protocols
can step-by-step simulate a Turing powerful computational device, in our case a
computational model called multi-stack machines.

A multi-stack machine R with ℓ stacks (ℓ ≥ 1) is a triple R = (Q, Γ,−→)
where Q is a finite set of control-states, Γ is a finite stack alphabet such that
Q ∩ Γ = ∅, and −→⊆ Q × Γ × Q × Γ ∗ is a finite set of transition rules, written
pX −→ qα for (p, X, q, α) ∈−→.

A configuration of a multi-stack machine R is an element from Q×(Γ ∗)ℓ. We
assume a given initial configuration (q0, w1, . . . , wℓ) where q0 ∈ Q and wi ∈ Γ ∗

for all i, 1 ≤ i ≤ ℓ. If some of the stacks wi are empty, we denote them by ǫ.
A computational step is defined such that whenever there is a transition rule

pX −→ qα then a configuration which is in the control-state p and has X on
top of the i’th stack (the tops of the stacks are on the left) can perform the
following transition: (p, w1, . . . , Xwi, . . . , wℓ) −→ (q, w1, . . . , αwi, . . . , wℓ) for all
w1, . . . , wℓ ∈ Γ ∗ and for all i, 1 ≤ i ≤ ℓ.

It is a folklore result that multi-stack machines are Turing powerful. Hence
(in particular) the following problem is easily seen to be undecidable: given an
initial configuration (q0, w1, . . . , wℓ) of a multi-stack machine R, can we reach
the configuration (h, ǫ, . . . , ǫ) for a distinguished halting control-state h ∈ Q such

that all stacks are empty? Without loss of generality we can even assume that a
configuration in the control-state h is reachable iff all stacks are empty.

Let R = (Q, Γ,−→) be a multi-stack machine. We define the following set of

keys of a ping-pong specification ∆: K
def
= Q ∪ Γ ∪ {kp | p ∈ Q} ∪ {t, k∗}. Here t

is a special key such that every communicated message is an encryption of the
plain-text key t. The reason for this is that it ensures that the protocol never
communicates any plain-text message. The key k∗ is a special purpose locking
key and it is explained later on in the construction.

We shall construct a ping-pong protocol specification ∆ as follows.

– For every transition rule pX −→ qα we have a process constant PpX−→qα

with the following defining equation: PpX−→qα
def
= pX⊲ . kqα⊲.PpX−→qα.

– For every state p ∈ Q we have two process constants Tp and T ′
p.

Tp
def
= kp⊲ . k∗⊲.T ′

p

T ′
p

def
= k∗⊲ . p⊲.Tp if p ∈ Q r {h}, and T ′

h

def
= h⊲ . h⊲.T ′

h

Recall that h ∈ Q is the halting control-state.
– Finally, we define a process constant B (standing for a buffer over a fixed

key k∗): B
def
= k∗⊲ . k∗⊲.B.

In this defining equation the key k∗ locks the content of the buffer such that
it is accessible only by some T ′

p.

Note that ∆ does not contain any choice operator ‘+’ as required.
Let (q0, w1, . . . , wℓ) be an initial configuration of the multi-stack machine

R. The corresponding initial configuration of the protocol ∆ is defined as fol-
lows (the meta-symbol Π stands for a parallel composition of the appropriate
components).

(

∏

(r,A,s,β)∈−→

PrA−→sβ

)

‖
(

∏

p∈Qr{q0}

Tp

)

‖ T ′
q0

‖
(

∏

j∈{1,...,ℓ}

k∗wjt.B
)

(1)

The following invariants are preserved during any computational sequence
starting from this initial configuration:

– at most one T ′
p for some p ∈ Q is present as a parallel component (the

intuition is that this represents the fact that the machine R is in the control-
state p), and

– plain-text messages are never communicated.

Theorem 1. The reachability problem for recursive ping-pong protocols without
an explicit choice operator is undecidable.

Theorem 2. The equivalence checking problem for recursive ping-pong proto-
cols without an explicit choice operator is undecidable for any behavioral equiv-
alence/preorder between trace equivalence/preorder and isomorphism (including
all equivalences and preorders from van Glabbeek’s spectrum [15]) and for any
reasonable label abstraction function.

4 The active intruder

In the literature on applying process calculi to the study of cryptographic proto-
cols, there have been several proposals for explicit modelling the active intruder
(environment). Foccardi, Gorrieri and Martinelli in [10] express the environment
within the process calculus, namely as a process running in parallel with the
protocol. In [4] Amadio, Lugiez and Vanackère describe a tiny process calculus
similar to ours, except that they use replication instead of recursion. Moreover,
the environment is described in the semantics of the calculus. Transitions are of
the form (C, T) → (C′, T ′) where C and C′ are protocol configurations and T
and T ′ denote the sets of messages known to the environment (all communication
occurs only by passing messages through these sets).

The environment is assumed to be hostile; it may compute new messages
by means of the operations of analysis and synthesis and pass these on to the
process. Let K be a set of encryption keys as before. The analysis of a set of
messages T ⊆ K∗ is the least set A(T) satisfying

A(T) = T ∪ {w | kw ∈ A(T), k ∈ K ∩ A(T)}. (2)

The synthesis of a set of messages T ⊆ K∗ is the least set S(T) satisfying

S(T) = A(T) ∪ {kw | w ∈ S(T), k ∈ K ∩ S(T)}. (3)

We can now design an environment sensitive semantics for our calculus close
in style to that of [4]. We define the reduction relation → by the following set of
axioms (here x ∈ P means that x is a summand in the defining equation of the
process constant P).

(P ‖ C, T) → (wα.P ′ ‖ C, T) if (v⊲ . w⊲.P ′) ∈ P and vα ∈ S(T) (A1)
(P ‖ C, T) → (P ′ ‖ C, T) if (v.P ′) ∈ P and v ∈ S(T) (A2)

(w.P ‖ C, T) → (P ‖ C, T ∪ {w}) (A3)
(P ‖ C, T) → (P ′ ‖ C, T ∪ {w}) if (w.P ′) ∈ P (A4)

We show that this semantics can be internalized in our calculus within our ex-
isting semantics. The construction is nontrivial as (on the contrary with stronger
calculi like spi-calculus) we can use only a very limited set of operations. The
details are in the full paper.

Theorem 3. For any recursive ping-pong protocol, we can define its new parallel
component which enables all the attacks described by axioms (A1) – (A4).

5 Replicative ping-pong protocols

In this section we shall define a replicative variant of our calculus for ping-pong
protocols. We will then show that this formalism is not Turing powerful because
the reachability problem becomes decidable.

Let us now define replicative ping-pong protocols. Let K be the set of en-
cryption keys as before. The set Conf of protocol configurations is given by the
following abstract syntax

C ::= 0 | v⊲ . w⊲ | v | w | !(v⊲ . w⊲) | !(v) | !(w) | C ‖ C

where 0 is the symbol for the empty configuration, v and w range over K∗,
and ! is the bang operator (replication). As before, we shall introduce structural
congruence ≡, which is the smallest congruence over Conf such that (Conf, ‖,0) is
a commutative monoid; ǫ ‖ C ≡ C ≡ ǫ ‖ C; !(ǫ) ≡ 0 ≡ !(ǫ); and !(C) ≡ C ‖!(C).
A labelled transition system determined by a configuration (where states are
configurations modulo ≡ and labels are non-empty messages as before) is defined
by the following SOS rules (recall the replicative axiom !(C) ≡ C ‖!(C) and the
fact that ‘‖’ is commutative).

m ∈ K+

m ‖ m ‖ C
m
−→ C

m ∈ K+ m = vα

m ‖ v⊲ . w⊲ ‖ C
m
−→ wα ‖ C

We can now show that the reachability problem for general replicative ping-
pong protocols is decidable. We reduce our problem to reachability of weak
process rewrite systems (wPRS) which was very recently proven to be decid-
able [13].

Theorem 4. The reachability problem for replicative ping-pong protocols is de-
cidable.

6 Conclusion

We have seen that ping-pong protocols extended with recursive definitions have
full Turing power. This is the case even in the absence of nondeterministic choice
operator ‘+’. A result like this implies that any reasonable property for all richer
calculi cannot be automatically verified.

We also presented an explicit description of the active intruder in the syntax
of recursive ping-pong protocols.

Finally, we showed that reachability analysis for a replicative variant of the
protocol becomes feasible. Our proof uses very recent results from process alge-
bra [13] and can be compared to the work of Amadio, Lugiez and Vanackère [4]
which establishes the decidability of reachability for a similar replicative pro-
tocol capable of ping-pong behaviour. Their approach uses a notion of a pool
of messages explicitly modelled in the semantics and reduces the question to a
decidable problem of reachability for prefix rewriting. In our approach we allow
spontaneous generation of new messages which is not possible in their calcu-
lus. Moreover, we can distinguish between replicated and once-only behaviours
(unlike in [4] where all processes have to be replicated).

Last but not least we hope that our approach can be possibly extended to
include other operations as the decidability result for replicative protocols uses

only a limited power of wPRS (only a parallel composition of stacks). Hence
there is a place for further extensions of the protocol syntax while preserving
a decidable calculus (e.g. messages of the form k1(k2 op k3)k4 for some extra
composition operation op on keys can be easily stored in wPRS as k1.(k2 ‖
k3).k4). Such a study is left for future research.

References

1. M. Abadi and A.D. Gordon. A bisimulation method for cryptographic protocols.
Nordic Journal of Computing, 5(4):267–303, 1998.

2. R.M. Amadio and W. Charatonik. On name generation and set-based analysis
in the Dolev-Yao model. In Proc. of CONCUR’02, vol. 2421 of LNCS, 499–514.
Springer-Verlag, 2002.

3. R.M. Amadio and D. Lugiez. On the reachability problem in cryptographic pro-
tocols. In Proc. of CONCUR’00, vol. 1877 of LNCS, 380–394. Springer-Verlag,
2000.

4. R.M. Amadio, D. Lugiez, and V. Vanackère. On the symbolic reduction of processes
with cryptographic functions. TCS, 290(1):695–740, October 2002.

5. M. Boreale. Symbolic trace analysis of cryptographic protocols. In Proc. of
ICALP’01, vol. 2076 of LNCS, 667–681. Springer, 2001.

6. D. Dolev, S. Even, and R.M. Karp. On the security of ping-pong protocols. Infor-
mation and Control, 55(1–3):57–68, 1982.

7. D. Dolev and A.C. Yao. On the security of public key protocols. Transactions on
Information Theory, IT-29(2):198–208, 1983.

8. N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Undecidability of bounded
security protocols. In N. Heintze and E. Clarke, editors, Proc. of FMSP’99, 1999.

9. M. Fiore and M. Abadi. Computing symbolic models for verifying cryptographic
protocols. In Proc. of CSFW’01, 160–173. IEEE, 2001.

10. R. Focardi, R. Gorrieri, and F. Martinelli. Non interference for the analysis of cryp-
tographic protocols. In Proc. of ICALP’00, vol. 1853 of LNCS, 354–372. Springer-
Verlag, 2000.

11. H. Hüttel and J. Srba. Recursion vs. replication in simple cryptographic protocols.
Technical Report RS-04-23, BRICS Research Series, 2004.

12. H. Hüttel and J. Srba. Recursive ping-pong protocols. In Proc. of WITS’04,
129–140, 2004.

13. M. Křet́ınský, V. Řehák, and J. Strejček. Extended process rewrite systems: Ex-
pressiveness and reachability. In Proc. of CONCUR’04, vol. 3170 of LNCS, 355–
370. Springer-Verlag, 2004.

14. M. Rusinowitch and M. Turuani. Protocol insecurity with a finite number of
sessions and composed keys is NP-complete. TCS, 299, 2003.

15. R.J. van Glabbeek. The linear time - branching time spectrum I: The semantics
of concrete, sequential processes. In Handbook of Process Algebra, chapter 1, 3–99.
Elsevier Science, 2001.

