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PREDICTIVE CONTROL
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Abstract. In this paper the optimal control law is derived for a multi-variable state
space Linear Quadratic Gaussian Predictive Controller (LQGPC). A dynamic perfor-
mance index is utilized resulting in an optimal steady state controller. Knowledge of
future reference values is incorporated into the controller design and the solution is
derived using the method of Lagrange multipliers. It is shown how the well-known
GPC controller can be obtained as a special case of the LQGPC controller design.
The important advantage of using the LQGPC framework for designing predictive
controllers, e.g. GPC, is that LQGPC enables a systematic restriction of the design
parameters to yield a stable closed loop system. The system model considered in
this paper can be further extended to also include direct feed-through and knowledge
about future external inputs.
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1. INTRODUCTION

An increasing popularity of Model Based Predic-
tive Control algorithms may be noted over the re-
cent years. Among predictive control schemes the
Generalized Predictive Controller (GPC) is per-
haps the best known and one of the most success-
ful representatives. Several papers analyze the
properties of GPC, e.g. [3], [11], [2]. The GPC
is a static variance minimization algorithm, i.e.
it separates the dynamic problem into individual
steps and a solution is obtained for each such step.
This does not necessarily give the optimal steady
state solution. Furthermore GPC control formu-
lae do not lend themselves easily to an analysis of
the closed-loop stability and performance proper-
ties [1]. This is a problem one faces when tuning
the GPC controller parameters.

As an alternative to static optimization in pre-

dictive controllers, dynamic optimization can be
used. A range of methods are available to deal
with dynamic variance minimization (see e.g. [4],
[5], [6], [7])- These methods are derived using a
frequency domain approach. A state-space dy-
namic optimization algorithm is proposed in [13].
The problem is formulated in state-space and a
single input single output so called Dynamic Pre-
dictive Controller (DPC) is derived using a state
feedback LQ formulation. The stochastic case, in-
volving use of a Kalman filter is also considered.
The multivariable version of DPC is outlined in
[12].

This paper gives more detailed insight into the
Linear Quadratic Gaussian approach to Pre-
dictive Control (LQGPC). The multivariable
LQGPC controller is derived using Lagrange mul-
tipliers. The stability of the controller is dis-
cussed. The characteristic equation is obtained.



It splits into two parts for stochastic systems. It
is shown explicitly how to incorporate the output
and control horizons into the system equations.
The relations between the proposed (LQGPC)
controller and the state-space version of the GPC
are discussed.

In LQGPC the optimal predictive control law is
derived using a LQG approach. Working with a
predictive control scheme like e.g. GPC in the
LQGPC framework offers a systematic way of re-
stricting the adjustable parameters to yield a sta-
ble closed loop system.

2. PROBLEM FORMULATION

2.1 PRELIMINARIES

Consider the linear system model in the ordinary
discrete-time state-space form:

wg?i-)l = A0z + BOy, + §u i
! = 0% +¢,,
1)
Here w§°’ is the system state vector with dimen-

sions (n,40) x 1). The vector of control signals u,
has the dimensions (n,, x 1). The vector of output
signals y§°’ has the dimensions (n,©) x 1). The
process noise £, ; and the measurement noise &, ;
have the dimensions (n,© x 1) and (n, x 1) re-
spectively. The system matrices A(O),B(O) and
C© are constant and can be obtained using any
appropriate system identification method. Intro-
ducing integral action now define:

A’U,t = Ut — Ut—1 (2)

Equation (1) and (2) can be combined defining an
extended state vector x:
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Hence, the state-space equations for the system

can be written:

Ti41 = Awt + BA’U,t + vy
y, = Czxy+ wy (3)

The systems of interest are subject to stochas-
tic process noise (v) and measurement noise (w).
However, from this point on it will be useful to
consider the deterministic optimal control prob-
lem, assuming states are available for feedback.
By invoking the Separation Principle of stochastic
optimal control theory, the controller will utilize
the deterministic control problem solution and a
state estimator. The system model in prediction
form is therefore given by:

Tirk = Axypp 1+ BAugg
Yirp—1 = CZppr (4)

The equations for the predicted future outputs
can be written in a more compact block matrix
form hereby obtaining the following equation:
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To solve the infinite horizon optimization prob-
lem, knowledge about all future values of the ref-
erence signal would be required. However, as the
prediction horizon is limited to N+1, only N+1
future references are assumed known at any par-
ticular time ¢. It is thus assumed that the future
references may be evaluated from the N+1 first
reference signals as follows:

Ry n=0OrnNR; N
where:

T
RN =[req1 Tigo Ti4N+1]

Here ©p N represents the transition matrix for
the reference signal. In order to incorporate the
knowledge of future reference values the extended
state vector is defined and the output equation is
rewritten:

] = = 3 e xer [o] o
Ax, + YU, n
Y.n = [‘I’NA 0] X; +SvUn
(6)



where:
B=[B 0 ... 0]

Now the error vector e; n can be defined for the
predicted error signals as:

een = Yyn—Ryn

= [@vA -I] [th ]+sNUt,N
~——— t,N
Lo

(7)
Now consider for a while a so called static perfor-

mance index of the type which is usually associ-
ated with predictive control problems:

N

Z[(yt+j+1 - "'t+j+1)T A,
Ji=0

Jo =

X (yt+j+1 - "'t+j+1)
+AuL Ay Ay ]

N
T T
= Z I:et+j+1A58t+j+1 + Aut_,_jAuAutH]

Jj=0

(8)

Using (7) this can be written:
Jo = efnAcesn +UlyAUsN

(9)
Here it has been assumed, without loss of general-
ity, the same interval j = 0,1,..., N exists for the
control signal (GPC: k = 1,...,N,) and for the
output error signal (GPC: [ = Ny, Ny +1,...,Ns).
The GPC design parameters N1, Ny and N, can
be incorporated in the LQGPC framework by
proper adjustment of various matrices. This will
be discussed later.

When using equation (9) as performance index
the vector Uy n of optimal control actions within
the horizon N, is calculated. However, only the
first element Awu, is applied and the procedure
is repeated in the next step. Therefore the algo-
rithm solves a static optimization problem in each
step.

2.2 DYNAMIC OPTIMIZATION
Now, consider the dynamic optimization. The dy-

namic performance index will be defined as an in-
finite sum of the indices of the form as in (9):
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(10)

There are some special cases where the perfor-
mance indices (9) and (10) yield the same opti-
mal control solution, for instance if the problem
can be transformed to the Astrém minimum vari-
ance controller. However, apart from these special
cases, the solutions obtained when minimizing (9)
and (10) are different.

It is easy to observe that (9) corresponds to the
situation when T = 1, it means static optimiza-
tion, looking only one step ahead.

Starting from the same initial conditions the two
performance indices will lead to two different con-
trol strategies and will settle on different steady
state values. In steady state, the algorithm result-
ing from (10) will provide the minimum value of
the performance indices (10) and (9). The value
obtained from the algorithm resulting from (9)
will be higher ([13]).

Using equations (5), (7) and (10) the LQGPC per-
formance index can be written:
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Without loss of generality we may assume A, and
A, to be symmetric and therefore @ and R to be
symmetric.

The performance index J in (11) is to be mini-
mized under the constraints (see (6)):

Ax, + U N
to,to+1,...,t0+T

Xiy1 =

o~
|

(12)



This is equivalent (see [10]) to minimizing the per-
formance index:

1 to+T
J=2 Y [x[Qx.+ VIRV, (13)

t=to

under the constraints:

Xt+1 éXt +eV,
Xt, = C
t = to,to+1,...,00+T
(14)
where:

Q = Q-MR'MT

Vi = R'M"x, +Un

G = A-YR'MT”T

This is an equality constrained problem in two
dimensions since the function to be minimized
and the constraints are functions of two variables
namely x and U. Such a problem can be solved
using the method of Lagrange multipliers.

3. SOLUTION

Minimizing J in (13) under the constraints in (14)
corresponds (see [10]) to minimizing the following
performance index:

1 to+T .
7 > [(xF@x. + VIRV:)

t=tg

Ly =

FAt+1 (éxt + 9V, — Xt+1)

~ T
+ (GXt +¥V, — Xt+1) At 1]
(15)

under the constraints:

Xtt1 Gx, + ¥V

Xto = C

where ¢ is a constant vector. The vectors
Ato+15 Aig42, - - - s Ago+T are called Lagrange mul-
tipliers. The Lagrange multipliers are eliminated
from the equations by assuming that they can be
written in the following form:

A = Pixy
P; P}
- p

Now, solving the minimization problem with re-
spect to P results in the block matrix Riccati
equation:

P, = Q+éTPt+1é

N -1 ~
—G¢'P T (R + \IJTPt_H\IJ) v'P, G

After some algebra this can be simplified to the
following block matrix Riccati equation:

P, = Q+ATPA— (M + ATPHI\I!)

-1
x (R + 2T Py \11) (MT + ‘IITPtHA)

In order to be able to write the optimal control
law in terms of P’s (matrix-) elements this equa-
tion is decomposed, and the optimal control law
can hereafter (see [12] or [8]) be written:
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Only the first (vector-) element of Uy n is actually
applied and can be written:

Au, = [I 0 0] Us n
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Hence, the resulting controller is a 2 degree-of-
freedom controller consisting of a feedback con-
troller matrix L, ; and a tracking controller ma-
trix Lgr;. In most practical situations, the state
vector x is not measurable. However, it can be
shown (see [8]) that the Separation Theorem holds
for the problem of computing an optimal con-
troller for the system defined by (3). Hence, in
the optimal control law the state x; can be sub-
stituted with &; resulting in:

Auy = —L, & — Lp R v

Next, the stability of the closed-loop system using
the steady state solution is considered.

4. STABILITY USING THE SS SOLU-
TION INCLUDING OBSERVER

In this section it is shown how the steady-state
stability of the overall closed-loop system includ-
ing an observer can be evaluated. The approach
taken here is the same as in [14].

Since the reference model is not part of a closed
loop and is itself stable by construction, R; x can
and will be set equal to zero in this section yield-
ing the control law: Au; = —T'; +&;.

Remember that:

w= o] =o'
y_q Us_q

The observer is given by:

20 = A9 4+ BOu, + K, (ygm _ C(O)£§0)>

The observer error is given by:

~ (0 0 (0
wg-}-)l = wg+)1 _w§4-)1

(A(O) _ Kx(o),tC(O)) d'zgo) + vy — Km(o),twt

Collecting the equation for the state & and the
equation for the observer error #© into a block
matrix form yields:

A© pg©
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(16)

Now since:
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equation (16) can be rewritten:
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where:
QL t = A(O) - B(O)Lw(o),t B(O) (I - L'M,t):|
: ~L,o, I—L,,
Qri = (A(O) - Km(o),tC(O))

The stability of the closed-loop steady-state so-
lution including an observer can be evaluated by
checking the location of the eigenvalues of the
transition matrix €2; using the steady-state solu-
tions to the controller Riccati equation (L0 o
and L, ) and the steady-state solution to the
observer Riccati equation (K ) ). Denote by
Q. the value of €, obtained by inserting these
steady-state matrices. The eigenvalues of 2, are
given as the solutions with respect to z of the char-
acteristic equation:

det (21 — Q) =0

)
det (2I — QU o0)det (21 — Rk ,00) =0
where:
o 3 A0 _ B(O)Lw(o),oo B© (I — Ly,00)
L, - _Lm(o),oo I — Lu,oo

Qoo = (A(O) —Km(O),mC(O))

If all Q4 ’s eigenvalues lie inside the unit circle
in the z-plane, the closed loop system is stable.
It is seen that the controller eigenvalues and the
observer eigenvalues can be chosen independently
as they do not influence each other. The con-
troller eigenvalues depend upon Lx(o>7Oo and Ly o

whereas the observer eigenvalues depend upon
K

z(0) oo+



5. GPC IN THE LQGPC FRAMEWORK

Consider now the GPC minimization problem as-
suming a model in the form (3):

minA’U/t,Aut+1,...,Aut+NU_1 E [Jt]

where:
No T
Ji = Z [(yt—H - Tt+l) A (yt+l - 7"tJrl)]
I=N;
N,
+ Z (At 1 AyAuyp 1]
k=1
Ty Ax; + BAu; + vy
Yy, = Czy+wy

(17)

If v; and w; are independent Gaussian white noise
sequences this minimization problem is equivalent
to the deterministic minimization:

mlnAutaAut+11-"vAut+Nu—1 Jt

where:
N2 T
Jo = Z [(yt+z —7i11) A (Yypr — Tt+l)]
I=N;
N,
+ Z [Aupp—1 AyAugyp_1]
k=1
Tyt Ax; + BAuy
Yy, = Cuxy

(18)

In GPC and LQGPC control the output and con-
trol intervals may be treated as tuning parame-
ters. In order to incorporate the output interval
[N1; N3] and the control interval [1; N,] in the de-
sign, it is enough simply to cut the correspond-
ing parts from the matrices in the output predic-
tion equation (5), adjust various matrices accord-
ingly and make certain substitutions. This will be
shown in the following. First note that the out-
put equation in (4) can be written in the following
prediction form:

k
Yo = CA*'z+) CA" " BAuy,
i=1

If the output interval is [N1; Na] and the control
interval is [1; V] like in (17) and (18) then the

block matrix form in (5) is modified to:

YN, cAMt
Yy cAM
t+j.V1+1 = ) Az
Y1+ N,y CAN—!
Yt,N1,N2 QI;:,NQ
cAM'B CcAM’B cAM-NB
CANIB CAlelB CAN1*N1L+1B
+
CAN?*lB CAN'Q*2B CAA"TN“
SN11N2
Aut
Augyg
X
Augin, 1
N————
U.n~,

Hence, the output equation in (6) is modified to:
YN N = ®Ny Ny AT + SNy N, U N,
The reference model is modified to:
Rii1ny,N, = OgrnN, N, RN N,
where:
Ry Ny Ny = [Pean, Teani1 TLEN]

Now the error vector in (7) is modified to:
YN Ny — RNy N,

— - wt
= [Bvmd ] [Rtwj

€{,N;,Ny =

Ly, ~
12 Xt,Nl,N2

+Sn. N U,

Define the weighting matrices A n, v, and A, n,
with appropriate dimensions corresponding to
e, N, N, and Uy n, respectively. With these def-
initions the GPC performance index in (18) can
be written:

Jy = ez:Nl,N2Ae,N1,N2 €i,Ny,N, + UZNu Ay, Ue,nN,
= (LNI,NQXt,Nl,NZ — SnN.,N, Ut,Nu)T Ac Ny ,N,
X (LNI,NZXt,Nl,N2 A Ut,Nu)
+U N, Aun, Ut
(19)
Summing up over t yields the LQGPC perfor-
mance index:

to+T
10+

=7 Z [(LNy Na X Ny Ny — SN NaUtn,) "
t=to

J

XA Ny Ny (LNy No Xt Ny N — SNy MU N,
+U{ Aun,Un,]
(20)



The structures of the performance indices (11)
and (20) are equal and with the following sub-
stitutions:

Ly =LN,,N, ; Xt = Xt,N1,N5 » SN = SNy,N,
Un=Uin,, Ae =Acn Ny, Au=Ayun,

exactly the same formulae as used in the common
horizon case from (11) and forward can be used
for deriving the optimal control law.

With time-varying A, and/or A, the stability
properties of the closed-loop system can no longer
be evaluated by checking the locations of Qs
eigenvalues the way it was done in the previous us-
ing the steady-state solution. Bitmead et al have
considered the analysis of receding horizon control
schemes with time-varying weight matrices in the
performance index ([1]).

6. COMPARISON OF GPC AND LQGPC

In both GPC and LQGPC, the vector Uy n, is to
be found. For the GPC controller (performance
index (19)) this can be obtained through straight
forward static minimization. For the LQGPC
controller (performance index (20)) a solution of
the control Riccati equation is needed. Therefore,
the LQGPC controller retains the stability fea-
tures characteristic for LQG design (see [9]). In
particular if the control algebraic Riccati equa-
tion has multiple solutions it is possible to select
a stable solution, leading to a stable control sys-
tem. In GPC design, a traditional approach to
deal with instability of the system would be to in-
crease the output horizon or to decrease the con-
trol horizon. The resulting controller may feature
a slower, more sluggish response. Generally, the
following features can be expected from a con-
troller with a long output horizon and short con-
trol horizon:

¢ Relatively small activity of the controller.

e The controller reacts too early to anticipated
changes in the reference signal in the future.

Therefore, it is beneficial to be able to operate
with relatively low output horizons and relatively
high control horizons. The constraint here is sta-
bility of the system. The LQGPC can provide
this stable solution.

7. CONCLUSION

In this paper the multivariable state space

LQGPC predictive control problem utilizing a dy-
namic performance index was formulated. The al-
gorithm resulting from using the dynamic perfor-
mance index yields the optimal steady-state value
of both the static performance index and the dy-
namic performance index. The value of both the
static and the dynamic performance indices will
be higher when using the algorithm resulting from
basing the controller design on the static perfor-
mance index.

The solution to the optimal control problem was
derived using the method of Lagrange multipli-
ers. The resulting controller was shown to be a 2
degrees-of-freedom controller consisting of a feed-
back controller and a tracking controller. The op-
timal control signal is therefore a linear combina-
tion of the state vector and the future reference
values. The formulae necessary for checking the
steady-state stability of the closed loop system in-
cluding an observer was given.

The GPC controller can be computed using the
LQGPC framework. Making adjustments of cer-
tain matrices the GPC performance index can be
rewritten into a LQGPC performance index. This
can be done since GPC can be seen as a special
case of LQGPC. When doing this it is possible to
use the LQGPC derivations/formulae to system-
atically obtain GPC design parameters yielding a
stable closed-loop system. This is an important
advantage of LQGPC over e.g. GPC.

A comparison of GPC and LQGPC was made.
The influence of the choice of control and output
horizons on the controller behavior was described
and general guidelines were given.

The control problem described in this paper can
be extended to also include knowledge of future
external input values, i.e. known signals from
other parts of the plant, and direct feed through in
the system model (see e.g. [12] or [8]). For state-
space LQGPC these extensions can be made by
extending the state vector and hereafter the state
transition vector, input vector and output vec-
tor accordingly. In [12] such direct feed through
terms and external inputs arose from generating
a linearized model for a part of a larger system.

Simulation studies [15] have shown that GPC is
sensitive towards the choice of horizons whereas
LQGPC is almost invariant. Furthermore the
LQGPC controller gives smoother responses with
less overshoot than the GPC controller (see [12]).
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