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Segmentation of Nonstationary Time Series
with Geometric Clustering

Alexei Bocharov and Bo Thiesson

Microsoft Research, One Microsoft Way, Redmond, WA 98052, U.S.A.
{alexeib,thiesson}@microsoft.com

Abstract. We introduce a non-parametric method for segmentation in regime-
switching time-series models. The approach is based on spectral clustering of
target-regressor tuples and derives a switching regression tree, where regime
switches are modeled by oblique splits. Such models can be learned efficiently
from data, where clustering is used to propose one single split candidate at each
split level. We use the class of ART time series models to serve as illustration,
but because of the non-parametric nature of our segmentation approach, it readily
generalizes to a wide range of time-series models that go beyond the Gaussian
error assumption in ART models. Experimental results on S&P 1500 financial
trading data demonstrates dramatically improved predictive accuracy for the ex-
emplifying ART models.

Keywords: Regime-switching time series, Spectral clustering, Regression tree,
Oblique split, Financial markets.

1 Introduction

The analysis of time-series data is an important area of research with applications in
areas such as natural sciences, economics, and finance to mention a few.

Many time series exhibit nonstationarity due to regime switching. Proper detection
and modeling of this switching is a major challenge in time-series analysis. In regime-
switching models, different time series regimes are described by submodels with differ-
ent sets of parameters. A particular submodel may apply to multiple time ranges when
the underlying time series repeatedly falls into a certain regime. For example, volatil-
ity of equity returns may change when affected by events such as earnings releases or
analysts’ reports, and we may see similar volatility patterns around similar events.

The intuition in this paper is to match proposed regimes with modes of the joint
distribution of target-regressor tuples, which is a particular kind of mixture modeling.
Prior research offers quite a variety of mixture modeling approaches to the analysis
of nonstationary time series. In Markov-switching models (see, e.g., [12,13]) a Markov
evolving hidden state indirectly partitions the time-series data to fit local auto-regressive
models in the mixture components. Another large body of work (see, e.g., [27,28]) have
adapted the hierarchical mixtures of experts in [15] to time series. In these models–also
denoted as gated experts–the hierarchical gates explicitly operate on the data in order to
define a partition into local regimes. In both the Markov-switching and the gated expert
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models, the determination of the partition and the local regimes are tightly integrated in
the learning algorithm and demands an iterative approach, such as the EM algorithm.

We focus on a conceptually simple direction that lends itself easier to explanatory
analysis. The resulting design differs from the above work in at least three aspects: 1) we
propose a modular separation of the regime partitioning and the regime learning, which
makes it easy to experiment independently with different types of regime models and
different separation methods, 2) in particular, this modularity allows for non-parametric
as well as parametric regime models, or a mixture thereof, 3) the regime-switching
conditions depend deterministically on data and are easy to interpret.

We model the actual switching conditions in a regime-switching model in the form
of a regression tree and call it the switching tree. Typically, the construction of a re-
gression tree is a stagewise process that involves three ingredients: 1) a split proposer
that creates split candidates to consider for a given (leaf) node in the tree, 2) one or
more scoring criteria for evaluating the benefit of a split candidate, and 3) a search
strategy that decides which nodes to consider and which scoring criterion to apply at
any state during the construction of the tree. Since the seminal paper [2] popularized
the classic classification and regression tree (CART) algorithm, the research community
has given a lot of attention to both types of decision trees. Many different algorithms
have been proposed in the literature by varying specifics for the three ingredients in the
construction process mentioned above.

Although there has been much research on learning regression trees, we know of only
one setting, where these models have been used as switching trees in regime-switching
time series models–namely the class of auto-regressive tree (ART) models in [18]. The
ART models generalize classical auto-regressive (AR) models (e.g., [11]) by having
a regression tree define the switching between the different AR models in the leafs.
As such, the well-known threshold auto-regressive (TAR) models [25,24] can also be
considered as a specialization of an ART model with the regression tree limited to a
single split variable. The layout of our algorithms is strongly influenced by [18] (which
we repeatedly refer to for comparison), but our premises and approach is very different.

In particular, we propose a different way to create the candidate splits during the
switching tree construction. A split defines a predicate, which, given the values of re-
gressor variables, decides on which side of the split a data case should belong.1 A
predicate may be as simple as checking if the value of a particular single regressor is
below some threshold or not. We will refer to this kind of split as an axial split, and it
is in fact the only type of splits allowed in the ART models. We make use of general
multi-regressor split predicates, which in this paper we approximate with linear predi-
cates called oblique splits. Importantly, we show evidence that for a broad class of time
series, the best split is not likely to be axial.

It may sometimes be possible to consider and evaluate the efficacy of all feasible
axial splits for the data associated with a node in the tree, but for combinatorial reasons,
oblique splitting rarely enjoys this luxury. We therefore need a split proposer, which is
more careful about the candidate splits it proposes. In fact, our approach is extreme in
that respect by only proposing a single oblique split to be considered for any given node

1 For clarity of presentation, we will focus on binary splits only. It is a trivial exercise to extend
our proposed method to allow for n-ary splits.
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during the construction of the tree. Our oblique split proposer involves a simple two step
procedure. In the first step, we use a spectral clustering method to separate the data in
a node into two classes. Having separated the data, the second step now proceeds as a
simple classification problem, by using a linear discriminant method to create the best
separating hyperplane for the two data classes. Any discriminant method can be used,
and there is in principle no restriction on it being linear, if more complicated splits are
sought.

Oblique splitting has enjoyed significant attention for the classification tree setting.
See, e.g., [2,20,3,10,14]. Less attention has been given to the regression tree setting,
but still a number of methods has come out of the statistics and machine learning com-
munities. See, e.g., [7,16,4] to mention a few. Setting aside the time-series context for
our switching trees, the work in [7] is in style the most similar to the oblique splitting
approach that we propose in this paper. In [7], the EM algorithm for Gaussian mixtures
is used to cluster the data. Having committed to Gaussian clusters it now makes sense to
determine a separating hyperplane via a quadratic discriminant analysis for a projection
of the data onto a vector that ensures maximum separation of the Gaussians. This vector
is found by minimizing Fisher’s separability criterion.

Our approach to proposing oblique split candidates is agnostic to any specific para-
metric assumptions on the noise distribution and therefore accommodates without
change non-Gaussian or even correlated errors (thus our method is more general than
ART, which relies on univariate Gaussian quantiles as split candidates). This approach
allows us to use spectral clustering - a non-parametric segmentation tool, which has
been shown to often outperform parametric clustering tools (see, e.g., [26]).

Spectral clustering dates back to the work in [8,9] that suggest to use the method for
graph partitionings. Variations of spectral clustering have later been popularized in the
machine learning community [23,19,21], and, importantly, very good progress has been
made in improving an otherwise computationally expensive eigenvector computation
for these methods [29]. We use a simple variation of the method in [21] to create a
spectral clustering for the time series data in a node. Given this clustering, we then use
a simple perceptron learning algorithm (see, e.g., [1]) to find a hyperplane that defines
a good oblique split predicate for the autoregressors in the model.

Let us now turn to the possibility of splitting on the time feature in a time series.
Due to the special nature of time, it does not make sense to involve this feature as an
extra dimension in the spectral clustering; it would not add any discriminating power
to the method. Instead, we propose a procedure for time splits, which uses the cluster-
ing in another way. The procedure identifies specific points in time, where succeeding
data elements in the series cross the cluster boundary, and proposes time splits at those
points. Our split proposer will in this way use the spectral clustering to produce both the
oblique split candidate for the regressors, and a few very targeted (axial) split candidates
for the time dimension.

The rest of the paper is organized as follows. In Section 2, we briefly review the ART
models that we use as a baseline, and we define and motivate the extension that allows
for oblique splits. Section 3 reviews the general learning framework for ART models.
Section 4 contains the details for both aspects of our proposed spectral splitting method–
the oblique splitting and the time splitting. In Sections 5 and 6 we describe experiments
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and provide experimental evidence demonstrating that our proposed spectral splitting
method dramatically improves the quality of the learned ART models over the current
approach. We will conclude in Section 7.

2 Standard and Oblique ART Models

We begin by introducing some notation. We denote a temporal sequence of variables by
X = (X1, X2, . . . , XT ), and we denote a sub-sequence consisting of the i’th through
the j’th element by Xj

i = (Xi, Xi+1, . . . , Xj), i < j. Time-series data is a sequence
of values for these variables denoted by x = (x1, x2, . . . , xT ). We assume continuous
values, obtained at discrete, equispaced intervals of time.

An autoregressive (AR) model of length p, is simply a p-order Markov model that
imposes a linear regression for the current value of the time series given the immediate
past of p previous values. That is,

p(xt|xt−1
1 ) = p(xt|xt−1

t−p) ∼ N (m+

p∑

j=1

bjxt−j , σ
2)

where N (μ, σ2) is a conditional normal distribution with mean μ and variance σ2, and
θ = (m, b1, . . . , bp, σ

2) are the model parameters (e.g., [6, page 55]).
The ART models is a regime-switching generalization of the AR models, where a

switching regression tree determines which AR model to apply at each time step. The
autoregressors therefore have two purposes: as input for a classification that determines
a particular regime, and as predictor variables in the linear regression for the specific
AR model in that regime.

As a second generalization2, ART models may allow exogenous variables, such as
past observations from related time series, as regressors in the model. Time (or time-
step) is a special exogenous variable, only allowed in a split condition, and is therefore
only used for modeling change points in the series.

2.1 Axial and Oblique Splits

Different types of switching regression trees can be characterized by the kind of pred-
icates they allow for splits in the tree. The ART models allow only a simple form of
binary splits, where a predicate tests the value of a single regressor. The models handle
continuous variables, and a split predicate is therefore of the form

Xi ≤ c

where c is a constant value and Xi is any one of the regressors in the model or a variable
representing time. A simple split of this type is also called axial, because the predicate
that splits the data at a node can be considered as a hyperplane that is orthogonal to the
axis for one of the regressor variables or the time variable.

2 The class of ART models with exogenous variables has not been documented in any paper. We
have learned about this generalization from communications with the authors of [18].
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The best split for a node in the tree can be learned by considering all possible par-
titionings of the data according to each of the individual regressors in the model, and
then picking the highest scoring split for these candidates according to some criterion. It
can, however, be computationally demanding to evaluate scores for that many split can-
didates, and for that reason, [5] investigated a Gaussian quantile approach that proposes
only 15 split points for each regressor. They found that this approach is competitive to
the more exhaustive approach. A commercial implementation for ART models uses the
Gaussian quantile approach and we will compare our alternative to this approach.

We propose a solution, which will only produce a single split candidate to be consid-
ered for the entire set of regressors. In this solution we extend the class of ART models
to allow for a more general split predicate of the form

∑

i

aiXi ≤ c (1)

where the sum is over all the regressors in the model and ai are corresponding coeffi-
cients. Splits of this type are in [20] called oblique due to the fact that a hyperplane that
splits data according to the linear predicate is oblique with respect to the regressor axes.
We will in Section 4 describe the details behind the method that we use to produce an
oblique split candidate.

2.2 Motivation for Oblique Splits

There are general statistical reasons why, in many situations, oblique splits are prefer-
able over axial splits. In fact, for a broad class of time series, the best splitting hyper-
plane turns out to be approximately orthogonal to the principal diagonal
d = ( 1√

p , . . . ,
1√
p ). To qualify this fact, consider two pre-defined classes of segments

x(c), c = 1, 2 for the time-series data x. Let μ(c) and Σ(c) denote the mean vector and
covariance matrix for the sample joint distribution of Xt−1

t−p , computed for observations
on p regressors for targets xt ∈ x(c).

Let us define the moving average At = 1
p

∑p
i=1 Xt−i. We show in the Appendix

that in the context where Xt−i − At is weakly correlated with At, while its variance
is comparable with that of At, the angle between the principal diagonal and one of the
principal axes of Σ(c), c = 1, 2 is small. This would certainly be the case with a broad
range of financial data, where increments in price curves have notoriously low correla-
tions with price values [22,17], while seldom overwhelming the averages in magnitude.
With one of the principal axes being approximately aligned with the principal diagonal
d for both Σ(1) and Σ(2) it is unlikely that a cut orthogonal to either of the coordinate
axes Xt−1, . . . , Xt−p can provide optimal separation of the two classes.

3 The Learning Procedure

An ART model is typically learned in a stagewise fashion. The learning process starts
from the trivial model without any regressors and then greedily evaluates regressors
one at a time and adds the ones that improve a chosen scoring criterion to model, while
scoring criterion keeps improving.
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The task of learning a specific autoregressive model considered at any stage in this
process can be cast into a standard task of learning a linear regression tree. It is done
by a trivial transformation of the time-series data into multivariate data cases for the
regressor and target variables in the model. For example, when learning an ART model
of length p with an exogenous regressor, say zt−q, from a related time series, the
transformation creates the set of T − max(p, q) cases of the type (xt

t−p, zt−q), where
max(p, q) + 1 < t ≤ T . We will in the following denote this transformation as the
phase view, due to a vague analogy to the phase trajectory in the theory of dynamical
systems.

Most regression tree learning algorithms construct a tree in two stages (see, e.g., [2]):
First, in a growing stage, the learning algorithm will maximize a scoring criterion by
recursively trying to replace leaf nodes by better scoring splits. A least-squares devia-
tion criterion is often used for scoring splits in a regression tree. Typically the chosen
criterion will cause the selection of an overly large tree with poor generalization. In a
pruning stage, the tree is therefore pruned back by greedily eliminating leaves using
a second criterion–such as the holdout score on a validation data set–with the goal of
minimizing the error on unseen data.

In contrast, [18] suggests a learning algorithm that uses a Bayesian scoring criterion,
described in detail in that paper. This criterion avoids over-fitting by penalizing for the
complexity of the model, and consequently, the pruning stage is not needed. We use this
Bayesian criterion in our experimental section.

In the next section, we describe the details of the algorithm we propose for producing
the candidate splits that are considered during the recursive construction of a regression
tree. Going from axial to oblique splits adds complexity to the proposal of candidate
splits. However, our split proposer dramatically reduces the number of proposed split
candidates for the nodes evaluated during the construction of the tree, and by virtue of
that fact spends much less time evaluating scores of the candidates.

4 Spectral Splitting

This section will start with a brief description of spectral clustering, followed by details
about how we apply this method to produce candidate splits for an ART time-series
model. A good tutorial treatment and an extensive list of references for spectral cluster-
ing can be found in [26].

The spectral splitting method that we propose constructs two types of split candidates–
oblique and time–both relying on spectral clustering. Based on this clustering, the method
applies two different views on the data–phase and trace–according to the type of splits
we want to identify. The algorithm will only propose a single oblique split candidate and
possibly a few time split candidates for any node evaluated during the construction of
the regression tree.

4.1 Spectral Clustering

Given a set of n multi-dimensional data points (x1, . . . , xn), we let aij = a(xi, xj)
denote the affinity between the i’th and j’th data point, according to some symmet-
ric and non-negative measure. The corresponding affinity matrix is denoted byA =
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(aij)i,j=1,...,n, and we let D denote the diagonal matrix with values
∑n

j=1 aij , i =
1, . . . , n on the diagonal.

Spectral clustering is a non-parametric clustering method that uses the pairwise prox-
imity between data points as a basis of the criterion that the clustering must optimize.
The trick in spectral clustering is to enhance the cluster properties in the data by chang-
ing the representation of the multi-dimensional data into a (possibly one-dimensional)
representation based on eigenvalues for the so-called Laplacian.

L = D −A

Two different normalizations for the Laplacian have been proposed in [23] and [21],
leading to two slightly different spectral clustering algorithms. We will follow a sim-
plified version of the latter. Let I denote the identity matrix. We will cluster the data
according to the second smallest eigenvector–the so-called Fiedler vector [9]–of the
normalized Laplacian

Lnorm = D−1/2LD−1/2 = I −D−1/2AD−1/2

The algorithm is illustrated in Figure 1. Notice that we replace Lnorm with

L′
norm = I − Lnorm

which changes eigenvalues from λi to 1 − λi and leaves eigenvectors unchanged. We
therefore find the eigenvector for the second-largest and not the second-smallest eigen-
vector. We prefer this interpretation of the algorithm for reasons that become clear when
we discuss iterative methods for finding eigenvalues in Section 4.2.

1. Construct the matrix L′
norm.

2. Find the second-largest eigenvector e = (e1, . . . , en) of L′
norm.

3. Cluster the elements in the eigenvector (e.g. by the largest gap in values).
4. Assign the original data point xi to the cluster assigned to ei.

Fig. 1. Simple normalized spectral clustering algorithm

Readers familiar with the original algorithm in [21] may notice the following sim-
plifications: First, we only consider a binary clustering problem, and second, we only
use the two largest eigenvectors for the clustering, and not the k largest eigenvectors in
their algorithm. (The elements in the first eigenvector always have the same value and
will therefore not contribute to the clustering.) Due to the second simplification, the
step in their algorithm that normalizes rows of stacked eigenvectors can be avoided, be-
cause the constant nature of the first eigenvector leaves the transformation of the second
eigenvector monotone.

4.2 Oblique Splits

Oblique splits are based on a particular view of the time series data that we call the
phase view, as defined in Section 3. Importantly, a data case in the phase view involves
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Fig. 2. Oblique split candidate for ART model with two autoregressors. (a) The original time
series. (b) The spectral clustering of phase-view data. The polygon separating the upper and
lower parts is a segment of a separating hyperplane for the spectral clusters (c) The phase view
projection to regressor plane and the separating hyperplane learned by the perceptron algorithm.
(d) The effect of the oblique split on the original time series: a regime consisting of the slightly
less upward trending and more volatile first and third data segments is separated from the regime
with more upward trending and less volatile second and fourth segments.

values for both the target and regressors, which imply that our oblique split proposals
may capture regression structures that show up in the data–as opposed to many standard
methods for axial splits that are ignorant to the target when determining split candidates
for the regressors.

It should also be noted that because the phase view has no notion of time, similar
patterns from entirely different segments of time may end up on the same side of an
oblique split. This property can at times result in a great advantage over splitting the
time series into chronological segments. First of all, splitting on time imposes a severe
constraint on predictions, because splits in time restrict the prediction model to infor-
mation from the segment latest in time. Information from similar segments earlier in
the time series are not integrated into the prediction model in this case. Second, we may
need multiple time splits to mimic the segments of one oblique split, which may not be
obtainable due to the degradation of the statistical power from the smaller segments of
data. Figure 2(d) shows an example, where a single oblique split separates the regime
with the less upward trending and slightly more volatile first and third data segments of
the time series from the regime consisting of the less volatile and more upward trend-
ing second and fourth segments. In contrast, we would have needed three time splits
to properly divide the segments and these splits would therefore have resulted in four
different regimes.

Our split proposer produces a single oblique split candidate in a two step procedure.
In the first step, we strive to separate two modes that relates the target and regressors for
the model in the best possible way. To accomplish this task, we apply the affinity based
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spectral clustering algorithm, described in Section 4.1, to the phase view of the time
series data. For the experiments reported later in this paper, we use an affinity measure
proportional to

1

1 + ||p1 − p2||2
where ||p1 − p2||2 is the L2-norm between two phases. We do not consider exogenous
regressors from related time series in these experiments. All variables in the phase view
are therefore on the same scale, making the inverse distance a good measure of prox-
imity. With exogenous regressors, more care should be taken with respect to the scaling
of variables in the proximity measure, or the time series should be standardized. Fig-
ure 2(b) demonstrates the spectral clustering for the phase view of the time-series data
in Figure 2(a), where this phase view has been constructed for an ART model with two
autoregressors.

The oblique split predicate in (1) defines an inequality that only involves the regres-
sors in the model. The second step of the oblique split proposer therefore projects the
clustering of the phase view data to the space of the regressors, where the hyperplane
separating the clusters is now constructed. While this can be done with a variety of
linear discrimination methods, we decided to use a simple single-layer perceptron op-
timizing the total misclassification count. Such perceptron will be relatively insensitive
to outliers, compared to, for example, Fisher’s linear discriminant.

The computational complexity of an oblique split proposal is dominated by the cost
of computing the full affinity matrix, the second largest eigenvector for the normalized
Laplacian, and finding the separating hyperplane for the spectral clusters. Recall that n
denotes the number of cases in the phase view of the data. The cost of computing the full
affinity matrix is therefore O(n2) affinity computations. Direct methods for computing
the second largest eigenvector is O(n3). A complexity of O(n3) may be prohibitive for
series of substantial length. Fortunately, there are approximate iterative methods, which
in practice are much faster with tolerant error. For example, the Implicitly Restarted
Lanczos Method (IRLM) has complexity O(mh+nh), where m is the number of non-
zero affinities in the affinity matrix and h is the number of iterations required until
convergence [29]. With a full affinity matrix m = n2, but a significant speedup can
be accomplished by only recording affinities above a certain threshold in the affinity
matrix. Finally, the perceptron algorithm has complexity O(nh).

4.3 Time Splits

A simple but computationally expensive way of determining a good time split is to
let the split proposer nominate all possible splits in time for the further evaluation.
The commercial implementation of the ART models relies on an approximation to this
approach that proposes a smaller set of equispaced points on the time axis.

We suggest a data driven approximation, which will more precisely target the change
points in the time series. Our approach is based on another view of the time series data
that we call the trace view. In the trace view we use the additional time information
to label the phase view data in the spectral clustering. The trace view, now traces the
clustered data through time and proposes a split point each time the trace jumps across
clusters. The rationale behind our approach is that data in the same cluster will behave
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in a similar way, and we can therefore significantly reduce the number of time-split pro-
posals by only proposing the cluster jumps. As an example, the thin lines orthogonal to
the time axis in Figure 2(d) shows the few time splits proposed by our approach. Get-
ting close to a good approximation for the equispaced approach would have demanded
far more proposed split points.

Turning now to the computational complexity. Assuming that spectral clustering has
already been performed for the oblique split proposal, the additional overhead for the
trace through data is O(n).

5 Evaluation

In this section, we provide an empirical evaluation for our spectral splitting methods. We
use a large collection of financial trading data. The collection contains the daily closing
prices for 1495 stocks from Standard & Poor’s 1500 index3 as of January 1, 2008. Each
time series spans across approximately 150 trading days ending on February 1, 2008.
(Rotation of stocks in the S&P 1500 lead to the exclusion of 5 stocks with insuffient
data.) The historic price data is available from Yahoo!, and can be downloaded with
queries of format http://finance.yahoo.com/q/hp?s=SYMBOL, where SYMBOL is the
symbol for the stock in the index. We divide each data set into a training set, used as
input to the learning method, and a holdout set, used to evaluate the models. We use
the last five observations as the holdout set, knowing that the data are daily with trading
weeks of five days.

In our experiments, we learn ART models with an arbitrary number of autoregressors
and we allow time as an exogenous split variable. We do not complicate the experiments
with the use of exogenous regressors from related time series, as this complication is
irrelevant to the objective for this paper. For all the models that we learn, we use the
same Bayesian scoring criterion, the same greedy search strategy for finding the number
of autoregressors, and the same method for constructing a regression tree – except that
different alternative split candidates are considered for the different splitting algorithms
that we consider.

We evaluate two different types of splitting with respect to the autoregressors in the
model: AxialGaussian and ObliqueSpectral. The AxialGaussian method is the standard
method used to propose multiple axial candidates for each split in an ART model, as
described in Section 2.1. The ObliqueSpectral method is our proposed method, which
for a split considers only a single oblique candidate involving all regressors. In combi-
nation with the two split proposer methods for autoregressors, we also evaluate three
types of time splitting: NoSplit, Fixed, and TimeSpectral. The NoSplit method does not
allow any time splits. The Fixed method is the simple standard method for learning
splits on time in an ART model, as described in Section 4.3. The TimeSpectral method
is our spectral clustering-based alternative. In order to provide context for the numbers
in the evaluation of these methods, we will also evaluate a very weak baseline, namely
the method not allowing any splits. We call this method the Baseline method.

We evaluate the quality of a learned model by computing the sequential predictive
score for the holdout data set corresponding to the training data from which the model

3 standardandpoors.com

standardandpoors.com
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was learned. The sequential predictive score for a model is simply the average log-
likelihood obtained by a one-step forecast for each of the observations in the holdout set.
To evaluate the quality of a learning method, we compute the average of the sequential
predictive scores obtained for each of the time series in the collection. Note that the
use of the log-likelihood to measure performance simultaneously evaluates both the
accuracy of the estimate and the accuracy of the uncertainty of the estimate. Finally, we
use a (one-sided) sign test to evaluate if one method is significantly better than another.
To form the sign test, we count the number of times one method improves the predictive
score over the other for each individual time series in the collection. Excluding ties, we
seek to reject the hypothesis of equality, where the test statistic for the sign test follows
a binomial distribution with probability parameter 0.5.

6 Results

To make sure that the results reported here are not an artifact of sub-optimal axial split-
ting for the AxialGaussian method, we first verified the claim from [5] that the Gaussian
quantiles is a sufficient substitute for the exhaustive set of possible axial splits. We com-
pared the sequential predictive scores on 10% of the time series in our collection and
did not find a significant difference.

Table 1 shows the average sequential predictive scores across the series in our collec-
tion for each combination of autoregressor and time-split proposer methods. First of all,
for splits on autoregressors, we see a large improvement in score with our ObliqueSpec-
tral method over the standard AxialGaussian method. Even with the weak baseline–
namely the method not allowing any splits–the relative improvement from AxialGaus-
sian to ObliqueSpectral over the improvement from the baseline to AxialGaussian is
still above 20%, which is quite impressive.

The fractions in Table 2 report the number of times one method has higher score than
another method for all the time series in our collection. Notice that the numbers in a frac-
tion do not necessarily sum to 1495, because we are not counting ties. We particularly

Table 1. Average sequential predictive scores for each combination of autoregressor and time
split proposer methods

Regressor splits Time splits Ave. score

Baseline Baseline -3.07

AxialGaussian NoSplit -1.73
AxialGaussian Fixed -1.72
AxialGaussian TimeSpectral -1.74

ObliqueSpectral NoSplit -1.45
ObliqueSpectral Fixed -1.46
ObliqueSpectral TimeSpectral -1.44
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Table 2. Pairwise comparisons of sequential predictive scores. The fractions show the number
of time series, where one method has higher score than the other. The column labels denote the
autoregressor split proposers being compared.

Baseline / Baseline / AxialGaussian /

AxialGaussian ObliqueSpectral ObliqueSpectral

NoSplit 118 / 959 74 / 1168 462 / 615
Fixed 114 / 990 79 / 1182 226 / 418
SpectralTime 122 / 955 71 / 1171 473 / 604

notice that the ObliqueSpectral method is significantly better than the standard Axial-
Gaussian method for all three combinations with time-split proposer methods. In fact,
the sign test rejects the hypothesis of equality at a significance level < 10−5 in all
cases. Combining the results from Tables 1 and 2, we can conclude that the large im-
provement in the sequential predictive scores for our ObliqueSpectral method over the
standard AxialGaussian method is due to a general trend in scores across individual
time series, and not just a few outliers.

We now turn to the surprising observation that adding time-split proposals to either
of the AxialGaussian and the ObliqueSpectral autoregressor proposals does not im-
prove the quality over models learned without time splits–neither for the Fixed nor the
TimeSpectral method. Apparently, the axial and oblique splitting on autoregressors are
flexible enough to cover the time splits in our analysis. We do not necessarily expect
this finding to generalize beyond series that behave like stock data, due to the fact that
it is a relatively easy exercise to construct an artificial example that will challenge this
finding.

Finally, the oblique splits proposed by our method involve all regressors in a model,
and therefore rely on our spectral splitting method to be smart enough to ignore noise
that might be introduced by irrelevant regressors. Although efficient, such parsimonious
split proposal may appear overly restrictive compared to the possibility of proposing
split candidates for all possible subsets of regressors. However, an additional set of
experiments have shown that the exhaustive approach in general only leads to insignif-
icant improvements in predictive scores. We conjecture that the stagewise inclusion of
regressors in the overall learning procedure for an ART model (see Section 3) is a main
reason for irrelevant regressors to not pose much of a problem for our approach.

7 Conclusions and Future Work

We have presented a method for building regime-switching trees for nonstationary time
series. The method is based on geometric clustering. More specifically, spectral clus-
tering has been used in this paper. As such, our method does not rely on any parametric
assumptions with regards to the distributions that best describe individual regimes. The
clustering-based split proposer is used to propose a single oblique split candidate at each
node level in the switching tree, which makes the method computationally efficient.
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In the evaluation part of the paper we limited ourselves to an extension of ART mod-
els that are built under the assumption of uncorrelated Gaussian error. The joint target-
regressor distribution for a regime-switching time series can be modeled as a mixture
of Gaussians in this case, and we were able to motivate and then prove empirically that
oblique splits are better at learning the mixtures than combinations of axial splits. In
fact, the experimental evidence we have collected shows that our approach when used
to extend the ART models, dramatically improves predictive accuracy over the current
approach. We still experimented under the assumption of Gaussianity. An important
future experiment should allow non-Gaussian models in the oblique switching trees.

The focus in this paper has been on learning regime-switching time-series mod-
els that will easily lend themselves to explanatory analysis and interpretation. In fu-
ture experiments we also plan to evaluate the potential tradeoff in modularity, inter-
pretability, and computational efficiency with forecast precision for our simple learning
approach compared to more complicated approaches that integrates learning of soft
regime switching and the local regimes in the models, such as the learning of Markov-
switching (e.g., [12,13]) and gated experts (e.g., [27,28]) models.
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Appendix

Lemma 1. Let Σ be a non-singular sample auto-covariance matrix for Xt−1
t−p defined

on the p-dimensional space with principal diagonal direction d = ( 1√
p , . . . ,

1√
p ), and

let At =
1
p

∑p
i=1 Xt−i. Then

sin2(Σd, d) =

∑p
i=1 cov(Xt−i −At, At)

2

∑p
i=1 cov(Xt−i, At)2

. (2)

Proof. Introduce St =
∑p

i=1 Xt−i. As per bi-linear property of covariance, (Σd)i =
1√
p cov(Xt−i, St), i = 1, . . . , p and (Σd)d = 1

p

∑p
i=1 cov(Xt−i, St) = cov(At, St).

Non-singularity of Σ implies that the vector Σd �= 0. Hence, |Σd|2 �= 0 and
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cos2(Σd, d) =
((Σd)d)

2

|(Σd)|2 =
p cov(At, St)

2

∑p
i=1 cov(Xt−i, St)2

.

It follows that

sin2(Σd, d)

= 1− cos2(Σd, d)

=
p
(

1
p

∑p
i=1 cov(Xt−i, St)

2 − cov(At, St)
2
)

∑p
i=1 cov(Xt−i, St)2

=

∑p
i=1 cov(Xt−i −At, St)

2

∑p
i=1 cov(Xt−i, St)2

Dividing the numerator and denominator of the last fraction by p2 amounts to replacing
St by At, which concludes the proof. �

Corollary 1. When Xt−i − At and At are weakly correlated, and the variance of
Xt−i −At is comparable to that of At, i = 1, . . . , p, then sin2(Σd, d) is small.

Specifically, let σ and ρ denote respectively standard deviation and correlation, and
introduce Δi = cov(Xt−i−At,At)

σ(At)
= ρ(Xt−i − At, At)σ(Xt−i − At). We quantify

both assumptions in Corollary 1 by positing that |Δi| < εσ(At), i = 1, . . . , p, where
0 < ε � 1. Easy algebra on Equation (2) yields

sin2(Σd, d) =
ΣΔ2

i

Σ(σ(At) +Δi)2

<
pε2σ(At)

2

p(1 − ε)2σ(At)2

=
ε2

(1 − ε)2
(3)

Under the assumptions of Corollary 1, we can now show that d is geometrically close
to an eigenvector of Σ. Indeed, by inserting (3) into the Pythagorean identity we derive
that | cos(Σd, d)| >

√
1−2ε
1−ε and close to 1. Now, given a vector v for which |v| =

1, | cos(Σv, v)| reaches the maximum of 1 iff v is an eigenvector of Σ. When the
eigenvalues of Σ are distinct, d must therefore be at a small angle with one of the p
principal axes for Σ.
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