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Abstract

In this paper a robust flux observer for an induction motor is
developed through an LMI approach. The observer is robust
to changes in rotational speed and in rotor and stator resis-
tances. The problem is formulated as complex-valued rank
constrained LMIs and solved through alternating projections.
The method achieves good performance with very little tun-
ing needed.

1 Introduction

Induction motors are widely used in industry, due to their
relatively low cost and high reliability. One way to obtain a
speed or torque control with a dynamic performance similar
to that of a more expensive DC-motor is to use Field Ori-
ented Control (FOC) [11]. Many other methods have been
suggested [16] [17] [14], but in general an estimate of the
rotor flux is needed in most of these control schemes. There-
fore a rotor flux observer must be employed.

The dynamic behaviour of the induction motor is affected
by time variations, mainly in the rotational speed and in the
rotor and stator resistances. The rotor flux observer must be
robust with regard to these variations.

The simplest flux estimation method is an open loop ob-
server based on stator current measurements [10]. This
method suffers from poor robustness and a slow convergence
rate. Several methods have been suggested to overcome this
[15] [12], but most of these are hard to tune or difficult to im-
plement. For industrial purposes the ideal observer scheme is
easy to implement in hardware and does not require tuning.

In this paper a robust flux observer is developed using
structured singular value (�) and Linear Matrix Inequalities
(LMI). The method used makes it very simple to include on-
line measurements of the rotational speed for gain schedul-
ing, but the main objective is to achieve an observer suitable
for speed sensorless control. The observer requires very lit-
tle tuning and is robust to variations in rotor and stator resis-
tances.

In the nineties, several control design problems have been
formulated in terms of LMIs. Efficient methods exist for

solving these convex optimisation problems [2]. In [5]
Gahinet and Apkarian provided solutions toH1 control
problems in terms of LMIs. In 1993 Packard suggested using
LMIs for gain scheduling synthesis of systems on linear frac-
tional form [13]. In [8] Helmersson suggested a controller
synthesis method including both robustness to uncertain pa-
rameters and gain scheduling. The synthesis problem is in
the form of a rank constrained LMI problem. This approach
will be taken here.

Section 2 describes the model of the induction motor and
the uncertainties considered. Section 4 deals with the ap-
plied method and how the rank constrained LMI problem
is solved. The performance of the observer will be demon-
strated through simulations in Section 5.

1.1 Redheffer star product

The Redheffer star product,?, represents the interconnection
in Figure 1, i.e.
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Note thatA ? B depends on a partitioning ofA andB. This
partitioning will always be clear from the context. See [18]
on how to computeA ? B.
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Figure 1: Redheffer star product.

2 Induction motor model

With widely used simplifying assumptions on symmetry
the following state space model can be derived for a VSI-
controlled squirrel cage induction motor [11]:
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imD andimQ are the magnetising currents which we wish to
estimate based on measurements of the stator currentsisD,
isQ and the stator voltagesusD , usQ. !r is the rotational
speed.

The model has five states, the four currents and the rota-
tional speed. The latter has been left out of the state space
equations for two reasons. Firstly, without knowledge of the
shaft loadmL, very little information about the magnetising
current can be extracted from the equation. Secondly, ex-
cluding it allows the model to be written as a linear parameter
varying model with!r as the varying parameter.

As described in Section 3 the special structure of the state
space equations governing the currents allows them to be
rewritten in a complex form:
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where�im = imD+jimQ,�is = isD+jisQ, �us = usD+jusQ,
and=f�g means imaginary part. As discussed in Section 3
this is the model which will be used further on. The matrices
Cim andDim have been added to model the measurement of
stator current and voltage.

2.1 LFT form

The method presented in Section 4 requires the model to be
in the form of a linear fractional transformation (LFT) as
shown in Figure 2.
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Figure 2: Linear fractional transformation form.

Ms is a constant matrix, and� is a block diagonal matrix
of bounded uncertainties. In Section 4 it is described how to
design a controller using measurementsy and control inputu
to minimise theH1-norm of the transfer function from dis-
turbance inputd to performance outputz. When designing
an observer, the control inputuwill be the state estimate, and
the performance outputz will be the estimation error. In or-
der to fit the model presented above into the LFT framework
M and� can be chosen as

Ms =

2
4 Aim Bim 0�

0 1
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0 �1
Cim Dim 0

3
5 � = s�1I2

This form cannot be used directly, sinces�1 is not bounded.
The following section describes how to overcome this.

2.2 Finite frequency method

In order to describe a dynamic system by a constant matrix
the frequency must be included in the uncertainties. For the
observer synthesis it is necessary to have bounded uncertain-
ties. Therefore we cannot directly use the LFT realisation
presented above. Two ways to overcome this are suggested
in [7]. The first way is to use a mapping from the unit disc to
the right half plane:

1

s
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1� Æ
(5)

This mapping can be realised via an LFT:
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The system can then be written as an LFT of the boundedÆ:

(s�1I) ?Ms = ((ÆI) ? Ns) ?Ms = (ÆI) ? (Ns ?Ms) (7)

Defining the new matrixM � Ns ?Ms the frequency can
then be treated as a complex uncertaintyjÆj < 1.

Alternatively a mapping from the interval[�1; 1] to the
negative imaginary axis can be performed with a similar LFT.
The frequency can then be treated as a real uncertaintyÆ 2
[�1; 1].

In [7] the method is only proposed for�-analysis, but here
it will be used for synthesis. The second mapping can there-
fore not be used as it will not guarantee stable observers. In
addition it only covers the negative half of the axis, but for a
complex-valued system the frequency response will not nec-
essarily be symmetric about the real axis.

2.3 Uncertain and time-varying parameters

The dynamical behaviour of the induction motor is affected
by time variations in the parameters. Parametric uncertain-
ties can easily be formulated as LFTs, see for instance [18].

The rotor resistanceRr can change as much as 50 % due to
heating. Since the change is slow the uncertainty is modelled
as real.

The stator resistanceRs can also change, but is usually
better ventilated thanRr, so the variations will not be quite
as large. The stator resistance uncertainty is also modelled as
real.

The rotational speed!r can change due to load distur-
bances or as a result of a command change to the controller.
As the changes can be fast the uncertainty is modelled as
complex. Sometimes!r is measured, but avoiding the use
of a speed sensor is often desirable, due to the relatively high
cost and high sensitivity to the environment of speed sensors.
Since the framework described in Section 4 easily allows for
both known and unknown uncertainties, both approaches are
tried here.

3 Complex system

Certain real valued systems can be written on a complex form
with half the number of states, inputs, and outputs. Define the
following convex matrix function set

Cs = fM(s) :M(s) =

�
Mr(s) �Mi(s)
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g (8)

and the matrix
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where the dimension will be apparent from the context.

Lemma 1 Let G;H; F = F � 2 Cs and
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M21 2 Cs. If a controller K exists yielding closed-loopH1
performance jjM ? Kjj1 < 
 then a controller K1 2 Cs
exists with equal or better closed loop performance, i. e.
jjM ?K1jj1 < 
.

Outline of the proof: The closed loop transfer function is
Cl =M11+M12KM21. jjCljj1 < 
 if and only ifC�l Cl <

2I . DecomposeK asK = K1+K2J , whereK1;K2 2 Cs.
When calculatingC�l Cl�
2 it can be put on the form in (10),
whereG andH are zero whenK2 is zero and whereF does
not depend onK2. By Lemma 1 the performance will then
at least be maintained by settingK2 = 0. �

Note that since the performance holds at all frequencies,
Lemma 2 holds equally well forH2 performance.
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can be written in the complex for

_x = Ax+ Bu (14)

wherex = x1 + jx2, u = u1 + ju2, A = Ar + jAi, and
B = Br+jBi. Note that the state space model of the current
equations (1) can be put on this form through a state trans-
formation.

This complex system is computationally simpler to work
with, and from Lemma 2 it is known that the optimal con-
troller is also of this form. Therefore it is chosen to work
with the complex form in the following.

4 Observer synthesis

The closed loop observer system is depicted in Figure 3.�
includes the frequency, the parameter uncertainty, and a map-
ping from estimation error to disturbance input. The system
is scaled so that the uncertainties are bounded by��(�) � 1.
The system is then stable if and only if��(Mc) < 1, where
Mc =M ?K [18].

Stability is not an issue in observer design as long as the
observer itself is stable, but robust performance is assured by
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Figure 3: ObserverK and uncertainty system� ?M .

letting the uncertainty block,�, include a full complex block
mapping from the scaled estimation error to disturbance in-
put [18]. Robust stability of this system then implies robust
performance of the original system. This section describes a
method for designing an observerK making��(Mc) < 1.

4.1 LMI synthesis

The upper bound function�� is defined as

��(Mc) = inf
�>0
P2P�
G2G�

f� :M�
c PMc + j(GMc �M�

cG) � �2Pg

(15)

P� andG� are block diagonal matrix sets corresponding
to the uncertainty structure. If an uncertainty sub-block is
full, then the corresponding sub-blocks ofP� andG� are
repeated scalars (aI; a 2 R). If the uncertainty sub-block
is repeated scalar, then the corresponding sub-blocks ofP�

andG� are Hermitian full blocks. If the uncertainty sub-
block is Hermitian (for repeated scalar, read real), then the
corresponding sub-block ofG� must be zero. Furthermore
the sub-blocks ofP� must be positive definite.
� provides an upper bound for�, i.e.��(Mc) � ��(Mc)

[3]. Since the�-value cannot be easily computed, the ob-
serverK will instead be designed to make��(Mc) < 1.

Defining the multiplier set

W� = fW = P + jG : P 2 P�; G 2 G�g
(15) can then be written as an LMI inW [8]:

��(Mc) =
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�W (�I �Mc)) � 0g (16)

whereherm(X) = 1
2 (X+X�), i.e. the Hermitian part. The

structure ofW is induced by the structure of the uncertain-
ties. W is block diagonal, and each block corresponds to a
block in the uncertainty. If an uncertainty is a full block, then
the corresponding block ofW must be repeated scalar. If an
uncertainty is a repeated scalar, then the corresponding block
of W can be a full block. For complex uncertainties the cor-
respondingW -blocks must be Hermitian and positive. For
Hermitian uncertainties it is only required that theW -block
is positive real (hermWi > 0).

Now, partitionM as
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Then

Mc =M ?K = Q+ UKV � (18)

and according to [8] a controller exists making�(M?K) < 1
if and only if a multiplierW 2 W� exists so that

herm(V ?(I +Q�)W (I �Q)V ?�) > 0 (19)

and

herm(U?(I +Q)W�1(I �Q�)U?�) > 0 (20)

whereX? is a matrix satisfying kerX? = rangeX . The
objective is to find aW 2 W� satisfying (19) and (20). Once
thisW has been found,P andG can be found. Inserting (18)
along withP andG in (15) gives a feasible LMI inK.

4.2 Gain scheduling synthesis

Some of the time varying parameters may not be known at
the time of the synthesis, but can be measured on-line. To
take advantage of this knowledge the controller can be made
dependent on these parameters in a gain scheduling proce-
dure. Gain scheduling is achieved by letting the controller
have access to copies of some of the uncertainties. For in-
stance the frequency which was included in the uncertainty

block is known.�� =

�
� 0

0 ~�

�
is the uncertainty block with

the known copies~� augmented.�M is the system augmented
with feed-through connections from the copies to the con-
troller, giving a new system�M :
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These feed-through connections allow the controller to ac-
cess the copies of the uncertainties. When inserting in (19)
and (20) everything but the upper left part ofW correspond-
ing to� vanishes. DefineS andR as the upper left part of
W andW�1 respectively. We then have

herm(V ?(I +Q�)S(I �Q)V ?�) > 0 (22)

and

herm(U?(I +Q)R(I �Q�)U?�) > 0 (23)

If no uncertainties are known, thenW = S = R�1. Having
copies of the uncertainties gives more freedom in the choice
ofR andS. To guarantee the existence of aW with an upper
left part equal toS and an inverse with an upper left part



equal toR certain conditions must be put onS andR. S
andR must have the same block diagonal structure as the
desiredW . Furthermore the following rank constraint must
be fulfilled for each block

rank(Si �R�1i ) � ri (24)

ri is the number of known copies of thei-th uncertainty
block. If the uncertainty is fully known then this is always
true.

For Hermitian uncertainties we need to guarantee the ex-
istence of a positive realWi. This is possible if the rank
constraint (24) is fulfilled and in additionS i andRi are pos-
itive real. For complex uncertaintiesWi must be Hermitian.
This is possible if, in addition to the previous demands,S i
andRi are Hermitian and positive, and if

�
Ri I
I Si

�
� 0 (25)

OnceS andR have been found,W can be reconstructed from
these, andK can be found as described above. Once a con-
stantK has been found, it can be converted into a dynamic
system, due to its feed-through connections to copies of the
frequencies. If other uncertainties are known, the dynamics
will depend on these.

4.3 Alternating projection method

The problem of findingS andR in Section 4.2 would be con-
vex if not for the rank constraints (24). In [6] it is suggested
to use alternating projections to overcome this problem. Re-
peated alternating orthogonal projections onto closed convex
sets will converge to the intersection of these sets (if the in-
tersection is non-empty). The basic idea is that even though
the set ofSs andRs fulfilling the rank constraint is not con-
vex, it is still possible to perform a projection. Convergence
to a feasible solution is only local, so the choice of initial
point becomes important.

In [6] projections onto several convex sets are presented.
The intersection of these forms the feasibility set of the
LMIs. The projections are only given for symmetric matrices
but can easily be generalised to complex matrices that are not
necessarily Hermitian. In addition to these all that is needed
is then a projection onto the structure ofS andR. This pro-
jection is simply given by setting the elements outside the
block diagonal elements to zero.

Unfortunately the computational overhead of this method
is massive. In [1] it is suggested to perform the projection
onto all LMI constraints in one step, by using the following
lemma.

Lemma 3 [1] The projection of Z0 onto the convex set
�convex is the solution to the convex minimisation problem:

min Trace(X)

Subject to

�
X (Z � Z0)

�

(Z � Z0) I

�
� 0

Z 2 �convex; X = X�

The solution to the minimisation problem is the point in
the feasibility set minimising the distance to Z0 in the sense
of the Frobenius norm. �

The minimisation problem can easily be implemented in
for instance the LMI Control Toolbox [4]. Complex-valued
problems can be converted into real-valued problems with
twice as many independent variables [4].

Projection onto the rank constraints

In addition to the projection onto the LMIs a projection onto
the rank constraints (24) is needed. A block-wise projection
is performed for all the sub-blocks ofS andR relating to
unknown uncertainties via the following lemma:

Lemma 4 [9] [6] Define the following set:

R � fZ 2 C 2n : rank(Z + J) � kg

where k is an integer fulfilling n � k � 2n, J is defined in
(9), and C 2n is the set of all 2n� 2n complex matrices.

The projection ofZi ontoR is given byZp = U�kV
��J ,

where U�V � = Zi + J is a singular value decomposition,
and �k is obtained by replacing the 2n�k smallest singular
values of � by zero. �

The rank constraint (24) is equivalent to

rank

�
Ri I
I Si

�
� ni + ri (26)

where ni is the size ofSi and Ri. By definingZi =�
Ri 0
0 Si

�
we can use Lemma 4 to project onto the rank

constraint and insert the resultingZp asZ0 in Lemma 3 to
project back onto the convex constraints. Alternating be-
tween these two projections will in most cases converge to
a feasible point fulfilling both constraints if such a point ex-
ists.

4.4 Finding the initial point

In [1] it is suggested to use the central solution to the LMIs
without rank constraints as the initial point for the alternating
projections. However, it was found that a better initial point
was obtained by first finding the optimalH1 observer dis-
regarding the structure of the uncertainty. This is a convex
problem. Once this observer is found, the closed loop trans-
fer matrix is found, andW is found as the central solution to
(16).



5 Results

An observer is designed for a 1.5 kW motor with parame-
tersRs = 4:5
, Ls = 0:34H , Lr = 0:342H , Lm =
0:329H , Zp = 2, andRr = 4:5
 and a nominal speed
!r = 280rad=s.

When no speed sensor is available, the observer must be
robust to deviations from the nominal speed for which it has
been designed. A sensible design is only obtained by re-
stricting the considered deviations to a small interval. It is
assumed that a speed observer is providing an approximate
value of the speed. To allow for a wider range of operation
some form of gain scheduling between observers designed
for a grid of operating points would have to be employed.
Here we will only consider one of these observers. Since
speed sensorless flux estimation is usually most difficult at
low speeds, the nominal speed!r = 10rad=s will be con-
sidered here.

The only thing that has to be chosen is the range of pa-
rameter variations for which the observer must have robust
performance. These are chosen as one tenth of the ex-
pected variations or more specifically!r 2 [9:8; 10:2] rad=s,
Rr 2 [4:4; 4:6]
, andRs 2 [4:49; 4:51]
. The intervals are
chosen smaller than the expected variations in order to avoid
an overly conservative observer.

5.1 Simulations

The designed observer (the�-observer) will be compared to
an observer of the type described in [10] (the JL-observer),
tuned to the author’s best ability. A simulation of the ob-
servers is performed on the data set illustrated in Figure 4.
For the first two seconds!r, Rr, andRs have their nominal
values. From the timeT = 2s until T = 3s the rotor re-
sistance slowly increases to 110 % of the nominal value, and
then slowly returns to the nominal value. In the following
interval fromT = 3s until T = 4s the stator resistance is
changed in the same manner. FromT = 4s until T = 5s the
values are all nominal. Then atT = 5s the rotational speed
is abruptly changed to9rad=s.

Figure 5 shows the performance of the two observers.
The solid lines show the JL-observer while the dashed lines
show the�-observer. The�-observer is considerably faster
initially. The performance degradation due to changes in
the resistances is approximately the same for the two ob-
servers. The period fromT = 4s to T = 5s shows that the
JL-observer once settled has slightly better nominal perfor-
mance than the�-observer. When!r changes, the�-observer
clearly outperforms the JL-observer. The reason for this is
indicated in the steady state error plots in Figure 6. The first
axis is the angular velocity of the magnetising current, and
the second axis is the estimation error of the angle. The vari-
ous lines show the error at different values of!r. As seen, the
angular estimation error of the�-observer is almost constant,
whereas it is highly frequency-dependent for the JL-observer.

The Figures 7 and 8 show similar plots for variations in
the resistances. The steady state errors at high frequencies
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Figure 4: Simulation data. The top figure shows the magni-
tude of the magnetising current. The bottom figure shows the
angular velocity of the magnetising current.
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Figure 5: Estimation errors from simulation. The dashed
lines show the�-observer and the solid lines show the JL-
observer. The top figure shows the magnitude estimation er-
ror. The bottom figure shows the angle estimation error.
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Figure 6: Steady state estimation error of the angle at differ-
ent rotational speeds. The top figure shows the�-observer,
and the bottom figure shows the JL-observer.
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Figure 7: Steady state estimation error of the angle with var-
ious values of rotor resistance. The top figure shows the�-
observer, and the bottom figure shows the JL-observer.
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Figure 8: Steady state estimation error of the angle with var-
ious values of stator resistance. The top figure shows the
�-observer, and the bottom figure shows the JL-observer.

are very large for the�-observer. This is fortunately a minor
problem since steady state operation usually will not exceed
30rad=s in angular flux velocity.

5.2 Gain scheduling with a speed sensor

Measuring!r allows for gain scheduling. An observer was
designed for the same system as above, including this gain
scheduling, and the estimation errors due to speed variations
were practically removed. The sensitivity to resistance vari-
ations was almost identical to that of the sensorless observer,
so in the case of speed measurements being available no ma-
jor improvements over the JL-observer were obtained.

6 Conclusion

A rotor flux observer for speed sensorless low speed opera-
tion was designed. The sensitivity of the observer to speed
variations was similar in magnitude to the sensitivity ob-
tained by the existing method to which it was compared, but

the angular estimation error is almost independent of the an-
gular velocity of the flux, making it more suitable for control
purposes.

A major advantage of the method is that very little tuning
was required.
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