Aalborg Universitet
AALBORG UNIVERSITY

DENMARK

Nonlinear Output Feedback Control of Underwater Vehicle Propellers using Advance
Speed Feedback

Fossen, T.l.; Blanke, M.

Publication date:
1999

Document Version
Ogsa kaldet Forlagets PDF

Link to publication from Aalborg University

Citation for published version (APA):
Fossen, T. I., & Blanke, M. (1999). Nonlinear Output Feedback Control of Underwater Vehicle Propellers using
Advance Speed Feedback.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at von@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: May 07, 2024


https://vbn.aau.dk/da/publications/30d9c0c0-9c2d-11db-8ed6-000ea68e967b

Nonlinear Output Feedback Control of Underwater Vehicle
Propellers using Advance Speed Feedback

Thor 1. Fossen*and Mogens Blankef
To Appear in the EEE Journal of Oceanic Engineering in 2000.

Accurate propeller shaft speed controllers can be designed by using nonlinear control theory and feed-

back from the advance speed of water going into the propeller. In this paper, an output feedback controller
is derived, reconstructing the advance speed from vehicle speed measurements, using a three-state model
of propeller shaft speed, forward (surge) speed of the vehicle and the advance speed. Lyapunov stability
theory is used to prove that a nonlinear observer combined with an output feedback integral controller
provide exponential stability. The output feedback controller compensates for variations in thrust due to
time-variations in advance speed. This is a major problem when applying conventional vehicle-propeller
control systems. The proposed controller is simulated for an underwater vehicle equipped with a single
propeller. The simulations demonstrate that the advance speed can be estimated with good accuracy. In
addition, the output feedback integral controller shows superior performance and robustness compared
to a conventional RPM controller.

Keywords: Output feedback control, propeller shaft speed control, nonlinear control, underwater vehicles.
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Surge speed of vehicle (m/s)
Advance speed (m/s)
Propeller shaft speed (rps)
Profeller shaft speed (rad/s)

Linear damping coefficient in surge (kg/s)
Quadratic damping coefficient in surge (kg/m)

Added mass in surge (kg)
Thrust deduction number (-)
Wake fraction number (-)

Mass of water in propeller control volume (kg)
Linear damping coeff. for control volume (kg/s)
Quadratic damping coeff. for control volume (kg/m)
Linear motor damping coefficient (kgm?/s)
Nonlinear motor damping coefficient (kgm?)
Moment of inertia for DC-motor/propeller (kgm?)

DC motor armature voltage (Volt)
DC-motor armature current (A)

DC-motor control input (current, voltage or torque)

Mass of underwater vehicle (kg)
Drag coefficient (-)
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Propeller diameter (m)

Propeller thrust (N)

Propeller torque (Nm)

Advance ratio (-)

Thrust coefficient (-)

Torque coefficient (-)

Density of water (kg/m?)

Natural frequency (rad/s)

Thrust constants (-)

Torque constants (-)

Thrust coefficient (kgm)

Thrust coefficient (kg)

Torque coefficient (kgm?)

Torque coeflicient (kgm)

Torque due to shaft speed (Nm)
Torque due to advance speed (Nm)
Thrust due to shaft speed (N)
Thrust due to advance speed (N)
Cross-sectional area in surge (m?)
Cross-sectional area of thruster (m?)

*Department of Engincering Cybernetics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway.
fDepartment of Automatic Control, Aalborg University, Fredrik Bajers Voj 7C, DK-9240 Aalborg, Denmark.



1 Introduction

Unmanned underwater vehicle (UUV) speed and position control systems are subject to an increased focus
with respect to performance and safety. This is due to an increased number of commercially and militarily
applications of UUVs. So far most focus has been directed towards the design of the outer-loop control
system, that is speed and positioning control systems while the design of the propeller servo loops have
received less attention. An overview of control methods for speed and positioning control of UUVs is found
in Fossen [8] and references therein. This paper focuses on the design of a propeller shaft speed controller
with feedback from estimated advance speed V,. The motivation for the work is compensation of thruster
losses due to variations in the magnitude of the propeller axial inlet flow.

In Yoerger et al. [28] a one-state model for propeller shaft speed n with thrust torque T' as output is
proposed. This model can be written:

2+ Ky n| = 7 (1)
T = T(n,Vy,) (2)

where 7 is the control input (shaft torque). For simplicity Yoerger et al. [28] assume that V, = 0 when
computing T. However, V,, can be measured by using a laser-Doppler velocimeter (LDV) system, a particle
image velocimeter (PIV) system or an acoustic Doppler velocimeter system for instance. In this article a
state observer for reconstruction of V, will be designed, that is V, is treated as an unmeasured state.

Healey et al. [10] have modified the models (1)—(2) to describe overshoots in thrust which are typical
in experimental data. Based on the results of Cody [5] and McLean [16], Healey and co-workers propose a
two-state model:

2 Imi+Kon = 7—Q(n,V,) (3)
miVy+ds(Ve —u) Vo —u| = T(n,V,) (4)
T = T(n,V,) (5)

to include the dynamics of the advance speed V, of the propeller and the forward speed w of the vehicle.
This was done by modelling a control volume of water around the propeller as a mass-damper system.
The mass-damper of the control volume interacts with the vehicle speed dynamics which also represents a
mass-damper system.

Originally Healey et al. [10] considered a wvoltage controlled motor. However, as shown in Appendix A
the model representation (3) can be used to describe:

e Motor (armature) voltage control
e Motor (armature) current control

e Motor torque control

The different DC-motor control strategies are obtained by choosing K,, and 7 according to Table 2 in
Appendix A. Experimental verifications of the one-state and two-state models are found in Whitcomb and
Yoerger [26].

Based on the model of Healey et al. [10] and the results in Appendix A, we propose a three-state propeller
shaft speed control model:

2rdpn+ Kon = 17—Q(n,V,) (6)

mpVe +do(Va —u) +dp (Ve —u) Ve —u| = T(n,Vy) (7)
(m— Xg)i — Xyu — Xyjulu| = (1—-1)T(n,V,) (8)

T = T(n,V,) (9)

where damping in surge is modelled as the sum of linear laminar skin friction, — X, u, (Faltinsen and Sortland
[7]) and nonlinear quadratic drag, —X,j, u|u|, (Faltinsen [6]). Similarly, we have included linear damping,
do(V, —u), and quadratic damping, d;(V, — )|V, — u/, in the axial flow model. Quadratic damping alone



would give an unrealistic response at low speeds since the damping at zero speed will be zero. The linear
skin friction gives exponential convergence to zero at low speeds.

In the sequel, the unmeasured state V, will be reconstructed by using a state observer. The objective
is that propeller thrust T'(n,V,) and torque Q(n,V,) can be computed for a time-varying V,, resulting in
a more accurate and robust control scheme than conventional shaft speed controllers where this effect is
neglected.

1.1 Propeller Losses

When designing an UUV control system, commanded forces and moments must be realized by a propeller
control system using a mapping from thrust demand to propeller revolution. This is a non-trivial task since
a propeller in water suffers several phenomena that cause thrust losses. The primaries are:

Axial Water Inflow: Propeller losses caused by azxial water inflow, that is the speed of the water going
into the propeller. This is usually referred to as advance speed. The advance speed will in general
differ from the speed of the vehicle. The dynamics of the propeller axial flow is usually neglected when
designing the propeller shaft speed controller. This leads to thrust degradation since the computed
thruster force is a function of both the propeller shaft speed and axial flow. The magnitude of the
axial flow will strongly influence the thrust at high speed so it is crucial for the propeller performance.

Other effects that will reduce the propeller thrust were described in Sgrensen et al. [23] and references
therein. Some of these effects are:

Cross-Coupling Drag: Water inflow perpendicular to the propeller axis caused by current, vessel speed
or jets from other thrusters. This will introduce a force in the direction of the inflow due to deflection
of the propeller race.

Air Suction: For heavily loaded propellers ventilation (air suction) caused by decreasing pressure on the
propeller blades may occur, especially when the submergence of the propeller becomes small due to
the vessel’s wave frequency motion.

In-and-out-of Water Effects: For extreme conditions with large vessel motions the in-and-out-of water
effects will result in a sudden drop of thrust and torque following a hysteresis pattern.

Thruster Hull Interaction: Thrust reduction and change of thrust direction may occur due to thruster-
hull interaction caused by frictional losses and pressure effects when the thruster race sweeps along the
hull. The latter is the Coanda effect (Faltinsen [6], pp. 270-272).

Thruster-Thruster Interaction: Thruster-thruster interaction caused by influence from the propeller
race from one thruster on neighboring thrusters may lead to significant thrust reduction.

1.2 Contributions

The main contributions of the paper are a globally exponentially stable (GES) nonlinear observer for es-
timation of advance speed using vessel speed and propeller revolution measurements (Theorem 1) and a
nonlinear output feedback propeller shaft speed controller using feedback from the estimate of the advance
speed (Theorem 2). The nonlinear shaft speed controller compensates for thrust losses due to time variations
in advance speed and it is shown to provide superior thrust quality compared to conventional designs. The
overall system is proven to be GES by applying Lyapunov stability theory. The proposed output feedback
controller is a step towards the design of more sophisticated output feedback shaft speed propeller controllers
minimizing some of the propeller losses listed in the previous section.

1.3 Outline

The paper is outlined as follows: Section 2 briefly reviews the theory of propeller thrust and torque modelling.
Section 3 describes the modelling of the underwater vehicle dynamics and the axial flow dynamics of the
propeller. In Section 4 a nonlinear observer for advance speed is proposed while Section 5 contains a



nonlinear output feedback controller for propeller shaft speed using the observer. Section 6 extends the
results of Section 5 to integral control. Section 7 contains a case study with a UUV driven by a single
propeller and Section 8 contains concluding remarks.

Figure 1: Schematic drawing of a propeller.

2 Propeller Thrust and Torque Modelling

For a fixed pitch propeller the shaft torque @ and force (thrust) T' depend on the forward speed u of the
vessel, the advance speed V,, (speed of the water going into the propeller) and the propeller rate n, see Figure
1. In addition, other dynamic effects due to unsteady flows will influence the propeller thrust and torque.
According to Newman [20], Breslin and Andersen [3] and Carlton [4] the following unsteady flow effects are
significant:

e air suction

e cavitation

o in-and-out-of-water effects (Wagner’s effect)
e wave influenced boundary layer effect

o Kuessner effect (gust)

In this paper we are considering a deeply submerged vessel implying that the first four effects above can
be neglected. The Kuessner effect, which is caused by a propeller in gust, will appear as a rapid oscillating
thrust component. These fluctuations are usually small compared to the total thrust in a dynamical situation.
In this paper, we will hence assume that this effect can be neglected as well. We can thus approximate the
thrust and torque models with a quasi-steady representation. As a result, we limit our discussion to quasi-
steady thrust and torque modelling while a dynamic model for shaft speed n, advance speed V,,, and surge
velocity u will be presented

Unsteady modelling is, however, an important topic for future research since unsteady flow effects are
significant in many practical situations in particular for surface vessels. A more detailed discussion on the
accuracy of unsteady and quasi-steady modelling is found in Breslin and Andersen [3], pp. 374-386.

2.1 Quasi-Steady Thrust and Torque

Quasi-steady modelling of thrust and torque are usually done in terms of lift and drag curves which are
transformed to thrust and torque by using the angle of incidence. This approach has been used by Yoerger
et al. [28], Healey et al. [10] and Whitcomb and Yoerger [26] for instance.



The lift and drag are usually represented as non-dimensional thrust and torque coefficients computed
from self-propulsion tests, see Fossen [8] or Lewis [13]. The non-dimensional thrust and torque coefficients
Krp and Kg are computed by measuring 7', () and n. Moreover:

T Q
Kpr(Jy) = ————, Kg(Jy) = —— 10
T( 0) pD4n\n|’ Q( 0) pD5n\n| ( )
Here D is the propeller diameter, p is the water density and:
Va
— 11
Jo nD (11)

is the advance ratio. The numerical expressions for Kr and K¢ are found by open water tests, usually
performed in a cavitation tunnel or a towing tank. These tests neglect the unsteady flow effects since
steady-state values of T, () and n are used.

The non-dimensional thrust and torque coefficients can also be described by the following parameters
(Oosterveld and van Qossanen [22]):

P Ap

Kr = fi (JO’B’A_O’Z> (12)
P Ag t

KQ - f2 <J07 57 A_07Z7 Rn; E) (13)

where P/D is the pitch ratio, Ag/Aq is the expanded-area ratio, Z is the number of blades, R, is the
Reynolds number, t is the maximum thickness of the blade section, and c is the chord length of the blade
section.

From (10) the thrust 7" and torque () can be written

T pD*K1(Jo)n |n| (14)
Q = pD°Kq(Jo)nln| (15)
The open water propeller efficiency in undisturbed water is given as the ratio of the work done by the

propeller in producing a thrust force divided by the work required to overcome the shaft torque according
to:

Il

VT Jy Ky
Mo = 2mnQ 2w . K_Q
Kr, Kg, and 7, curves for different pitch ratios for a Wageningen B-screw series based on Table 5 in
Oosterveld and van Qossanen [22], with R,, =2-10°, Z =4, D = 3.1 m, and Ag/A, = 0.52 are shown in
Figure 2.
For simplicity we will consider an underwater vehicle where Ky and K¢ show a linear behavior in Jy.
Hence, we suggest to approximate:

(16)

Kr = a1dyg+ as (17)
Kq = B1Jo+ B (18)
where a; and 3; (i = 1,2) are four non-dimensional constants. It should be noted that nonlinear functions

for Kt and K¢ can also be used. This is equivalent to the lint theory result, see Blanke [1]. Formulas
(17)—(18) imply that the mathematical expressions for @ and T can be written as (Fossen [8], pp. 94-97):

T = ﬂz\n|n |TL| - iT|n|Va |TL| Va (19)
Q - Qn|n\n ‘n| - Q|71\V{,, TL‘ Va (20)
where
_ 5 _ 4
Qn\n| - PD ﬁQ Tn|n\ = PD a2 (21)

Qnv, = pD*f, Tinv, = pD3oy

are positive propeller coefficients given by the propeller characteristics. Notice that T and () are defined for
all n even though Jy is undefined for n = 0. This is important since the observer-controller will be based on
the expressions for T and Q.
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Figure 2: Open water Kp (solid), 10 - Kg (dash) and 7, (dash-dot) as a function of advance ratio Jy for
P/D =0.7,0.89 and 1.1. Reconstructed from data in [22].

3 Underwater Vehicle and Propeller Axial Flow Dynamics

Without loss of generality, we will consider an UUV moving in surge (a-direction) equipped with one single
propeller aft of the hull (Figure 1). We also assume that the propeller is driven by a DC-motor, see Appendix
A.

Let u (positive forwards) denote the forward speed of the underwater vehicle. The surge dynamics is
assumed coupled to the advance speed of the propeller V, (positive backwards) according to:

(m—Xo)u— Xyu — Xypulu] = (1-t)T (22)
myVo+do(Vy —u) +dy(Vy —u)|Vy —u| = T (23)

where my > 0,dg > 0 and dy > 0. The vessel dynamics in surge (22) is modelled according to Fossen [§]
where m — Xy > 0 is the mass of the vessel including hydrodynamic added mass, — X, u — Xy u |u| > 0 is
damping due to linear skin friction (Faltinsen and Sortland [7]) and quadratic drag (Lewis [13]), and ¢ > 0
is the thrust deduction number (typically 0.05 — 0.2) due to propeller-hull interactions.

The dynamics of the water (23) due to a control volume surrounding the inlet flow of the propeller is
based on the work of Healey et al.  [10], Cody [5] and McLean [16]. The only difference is that linear
damping, do(V, — u), is added in addition to the quadratic term df(V, — u)|V, —u| in order to produce
more physical results at low speed, that is then V, — u is small. Hence, exponential convergence of V, to u
is guaranteed for T = 0. Notice that (23) represents a nonlinear ”hydrodynamic” mass-damper.

For a vessel moving at positive cruise-speed in steady flow, u =constant and V,, =constant. The relation-
ship between the steady-state speeds is defined as (Lewis [13]):

Val = (1 — w) |u| (24)

where w > 0 (typically 0.1 — 0.4) is denoted as the wake fraction number, see also Sgrensen et al. [23]. The
static relationship (24) is not a good approximation for a dynamically positioned (DP) vehicle operating in
the wave affected zone. Station-keeping implies that the propeller speed will oscillate about a slowly-varying
mean depending on the wave, current and wind loads. This might lead to limit cycles if the propeller
control system does not compensate for the dynamic effect due to the "hydrodynamic” mass-damper (23).
Conventional propeller control systems do not include the effect of the advance speed V,, since this requires



that the propeller unit must be equipped with an additional sensor which can be quite expensive. In this
paper, we will address the problem of nonlinear state estimation in order to reconstruct the state V, from
speed measurements u.

Determination of the Axial Flow Parameters m; and dy

The axial flow damping coefficients can be related to the wake fraction number w in steady-state by consid-
ering the steady-state solutions of (22) and (23), that is:

—Xyu — Xy lul = (1 —t) [do(Ve — u) +dy (Vo —u) [V — ul] (25)
Substituting (24), yields:
(—Xu — (L= t)dow) u + (— Xy — (1 — t)dsw?) ulu| =0 (26)
Solving this expression for dy and dy under the assumption that u # 0, yields the following formulas:

—Xu 7Xu\u|
—— >0, df=-7—5>0 27
T > (27)

d =
0 (1—t)w?

since t > 0 and w > 0. The mass my of the control volume can be treated as a design parameter. A guideline
could be to choose my according to Healey et al. [10]:

my = pAthrusterl’7 >0 (28)

where p is the density of water, Apryuster 1S the cross-sectional area of the thruster, [ is the length of the duct
and v > 1.0 is an empirically determined added mass coefficient. For conventional vehicles:

0<my<m (29)

Determination of the Hydrodynamic Coefficients X;, X, and X,y

The UUV model parameters can be found by using system identification (SI) methods, see Zhou and Blanke
[29] for instance, hydrodynamic computation programs, semi-empirical methods or engineering judgement.
For a slender body a first guess could be (Fossen [8]):

— X, =(0.05—0.10) - m (30)
The damping coefficients can be found by as:

m — Xu 1
Xy = ) 7Xu\u| = §pCdAsurge (31)

Tsurge

where Tyyqe > 0 is a design parameter (time constant in surge), Cy is the drag coefficient and Agypge is
the cross-sectional area in surge as defined by Morrison’s equation, see Lewis [13]. Alternatively, — X, and
—Xy|u| can be found by performing a free decay test (Faltinsen [6]).

3.1 Resulting Model for Vehicle Speed and Propeller Axial Flow Dynamics
Equations (22)—(23) and (19) can be combined to give:

m—X; 0 o n — Xy — Xy |ul 0 u
0 my Va —do —dy |Vo —u| do+df|Vy —ul Va
0 (1 — t)ﬂn\V,;, u _ (1 — t)Tnm‘TL \n\
+n| 0 Tinv, V., - Ty 0|

(32)



The measurement equation is:

y=[1 0][5} (33)

This can be written in state-space form according to:

Q

Hx+Dox+D1(x,y)x+ |n|Ex = f(n) (34)
y = hlx (35)
where x = [u, V,]7, y = u and
[ TTL*Xu 0
H = _ 0 m; ] (36)
[ —X, 0
D() - I *do dO :| (37)
[ - 0
Di(xy) = ulul 41 ] 38
I I A A (%)
[ 0 (1 - t)T|n|V :|
E = a 39
L0 T, (39)
[ (1 — )Ty m|n|
fn) = | i ] 40
(n) Tyt 1) (40)
h" = [1 0] (41)

4 Nonlinear Observer for Propeller Axial Flow

A nonlinear observer for shaft speed estimation and fault detection has been proposed by Blanke, Izadi-
Zamanabadi and Lootsma [2] under the assumption that the effect of the propeller axial inlet flow V,, can
be neglected. They have proven semi-global asymptotic and (local) exponential stability for the case with
quadratic damping.

Nonlinear observers for underwater vehicles can also be designed by using contraction analysis as described
by Lohmiller [17], pp. 3842, Lohmiller and Slotine [18], [19]. This is based on the method of Lewis [14]
where it is shown that the Riemann metric can be used as a tool for contraction analysis of non-autonomous
nonlinear systems. Furthermore, combination properties of contracting systems can be exploited to design
globally convergent observer-controllers for shaft speed output feedback control which is attractive due to
design simplicity and good convergence properties.

The focus of this paper is Lyapunov-based output feedback control and global exponential stability
properties which are important from a robust performance point of view. This gives a different observer
structure than the one obtained from contraction analysis. For a more detailed discussion on nonlinear
observer-controller design see Nijmeijer and Fossen [21] and references therein.

4.1 Observer Equations

In this section, we will derive a nonlinear state observer for the unmeasured state V, and use this result as
a basis for the nonlinear controller. The main motivation for this is that the control law should exploit V,
in the design in order to reduce propeller losses. This is done by choosing the following observer structure
copying the dynamics (34)—(35):

Hx + DoX+D1 (R,y)%+ |n| £X f(n) +k(n)j (42)
7 = hix (43)

Il



where § = y — ¢ and an intelligent guess for the observer gain vector is:

) = | g | 1ol | R (49)

The error dynamics corresponding to X = x — X becomes:

Hi = — (Do +|n| € + k(n)hT) % — 8(x,%.y) (45)

where the nonlinear estimation error term d(x,X,y) is:

B, %)~y e Dy ()i — | o) ] (16)
dr Vo=l (Ve =) = ds |V 3| (Va =)
Defining:
R B P )
implies that (45) can be written:
Hx = —F%—|n|G% — 8(x, %) (48)

We will now show how the elements in the observer gain vector k(n) can be chosen such that the equilibrium
point x = 0 is GES.
4.2 Lyapunov Analysis

Consider the Lyapunov function candidate:

Vaps(X)t) = xTHX (49)

t
Vobs(%,8) = —%xT (F+FT) %—|n|x" (G+67) % — 2%78(x, %) (50)

where the design goal is to choose Kyg, K29, K11 and Ko7 such that Vobs < 0 for all x # 0.
For a nondecreasing function f(x) it can be shown that:

(—2)(f(x) - f(2)) 20 (51)
From (51) it is seen that the nonlinear coupling term %T6 in Vobs satisfies:

K5(x,%y) = (0—)61+ (Va— Va)os
= (u—0) (= Xyp) (Ju|u — |a| @)
+ ((Va - y) - (Va - y)) df (|Va - y‘ (Va — y) - Va - y‘ (Va - y))
> 0 (52)

since —Xyj,| > 0 and dy > 0. This is due to the fact that dissipative damping terms like quadratic drag,
w|u|, and also higher order terms in u |u|" (n =1,2,3...) are all nondecreasing. Therefore:

Vobs (%,t) < —%T (F+FT) %~ n| %" (G+67) % (53)

Next we notice that the last term in (53) is zero if n = 0. For non-zero values of n we therefore require
that:

2K11 (1 _t)Tln\Va, + Ko

+g7 =
o (1 =) Ty, + Kot 2T\ v,

>0 (54)



which is easy to satisfy since K71 and Ko; can be chosen such that:

Ky > 0 (55)
ATy, > (1= 8T, + K1) (56)

Hence,
Vobs (%,t) < %7 (F+FT) % (57)

We will now show that the remaining two gains K9 and Kgg can be chosen such that:

Vs (1) < %7 (F+F1) %
< —qui? - V2
< OVa#0,V,#£0 (58)

where g1 > 0 and g2 > 0. In order to prove this we will make use of the following lemma:

Lemma 1 (Negative Quadratic Form) The quadratic form:

V= -xTPx (59)
with P = {p;;} is bounded by
V< —qia? — goa3 (60)
where
@ = pn—-p8>0 (61)
Q@ = p22—%>0, 6>0 (62)
pin > B3>0 (63)
D22 > (piz + pa1)” Iﬂpﬂ)Q >0 (64)
Proof. Expanding V, yields:
V= —puai — (p12 + p21)w172 — poot
= —(pn — B)I% - <\/BI1 + —(p122\-;§21)x2>2 - <1022 - —(p12 l—ﬁpg1)2> 3
< -0t~ (- L2l (65)
@ ~

q2

From this it is seen that (63)—(64) implies that ¢; > 0 and g2 > 0 and therefore that V < 0forall z; £0
and zo #0. =

Theorem 1 (GES Nonlinear Observer Error Dynamics) The equilibrium point X = 0 of the observer
error dynamics (48) is GES if K11 and Ko1 are chosen such that G+G* > 0, that is:

Ki; > 0 (66)
4K Ty, > (1= 8Ty, + Kar)® (67)
while K19 and Koy must satisfy:
2do > (—do + Ka0)? (68)
Kig— X, > %ﬂ (69)

where 3 > 0.

10



Proof. Let
2(=Xy + Ki0) —do+ Kao

P=F+F = | "' Ko 2do (70)

in Lemma 1. Hence,
P11 = 2(=Xu+Kip)>B>0 (71)
P2 = 2do> w >0 (72)

directly implies (68)-(69). It then follows that V < —gq122 — goa with ¢; > 0 and ¢ > 0. Hence, it follows
from Lyapunov stability theory that the equilibrium point x =0 is GESif 3> 0. =

It should be noted that we have not considered bias state estimation when designing the observer. In a
practical implementation it might be necessary to augment a constant bias term to the dynamic model in
order to improve robustness to unmodelled dynamics and parametric uncertainties. Bias state estimation
for ships have been discussed by Fossen and Strand [9] and, Zhou and Blanke [29].

5 Definition of the Control Problem

The control objective is to design a propeller shaft speed controller tracking the desired propeller revolution

ng (inner loop controller) by compensating the axial flow dynamics V. The desired propeller rate of revolution

is generated by the UUV speed controller where u, denotes the desired vessel speed (outer loop controller).
The dynamics of the two control loops can be summarized according to:

UUYV Speed Control Loop
The surge dynamics of the UUV is:

T = u (73)
(m — Xg)i — Xyu — Xyulu| = (1-t)T (74)

where T is the control input (force) generated by a speed controller
T = T(dd,ud, u) (75)

designed such that © — ugy.

Propeller Shaft Speed Control Loop
The desired shaft speed is found from (19) as:

Ty, + sign(Td)\/ ‘T@ v, V2 + AT T
2T
= w(Ty,Va) (76)
fta + 2wrig + wing = wing, wr>0 (77)

ny =

where Ty is the desired thrust and (77) is a 2nd-order low-pass filter with natural frequency wy used to
generate two smooth reference signal ng and n4. These signals are again used as reference for the propeller
controller:

T =1(Ng,ng,n, V,) (78)
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corresponding to the two-state actuator dynamics:

W= a0, Q0 Vo)) (79)
Va = d)Q(naVaau) (80)
T = T(n,V,) (81)

This model is similar to the model of Healey et al. [10] except for that we have included the effect of the
forward speed u in the expression for the V,-dynamics. The two control loops are shown in Figure 3 indicating
how a nonlinear shaft speed propeller controller together with a conventional UUV speed controller should
exploit the estimate of the propeller axial flow V,. It is also seen that this is a nonlinear output feedback
control problem. One solution to this control problem is to apply observer backstepping (Krstic et al. [12]).
This is the topic for the next section.

Experiments with different RPM control strategies and position control of underwater vehicles are re-
ported in Tsukamoto et al. [24] and Whitcomb and Yoerger [27].

Propeller advance speed estimator

Nonlinear

| observer
A

:< >

i 0.

Y

ud

Speed n, Nonlinear

. |
__H/n % T Vessel u

dynamics
T(n,V)

" 4 quadrant
propeller torque
and thrust mappings

T,
controller [ TV propel

controller
A A

=

Inner loop shaft speed controller

Figure 3: Block diagram showing the two control loops.

6 Nonlinear Output Feedback Control Design

In this section we will design a nonlinear output feedback propeller controller using only surge speed mea-
surements u and propeller revolution measurements n. The advance speed of the water V, will be estimated
by the state estimator (42)—(43) which was proven to be GES (Theorem 1). The design goal is to render the
closed-loop error dynamics of the observer-controller GES.

6.1 Nonlinear Model for Propeller Shaft Speed Control
Consider the unified DC-motor model (Appendix A):

O It + Knn =7 — Q(n, V,) (82)
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which can be used to describe motor wvoltage, current and torque controlled propellers. Substituting the
expression for @) given by (20) into (82), yields the 3rd-order model:

2rdmn = —(Ky + Qujny )0+ Qv (2| Vo + 7 (83)
Hx+Dox+D1(x,y)x+|n|Ex = f(n) (84)
y = hlx (85)

6.2 Lyapunov Analysis
The observer (42) is used to generate an estimate V, of V,. Consider the control Lyapunov function candidate:

V = Vips + 7Jmi? (86)
V < —qui? — V2 +2nd, i (87)

where i = n — ng is the tracking error. Substituting (83) into (87), yields:
V < —CI1?~$2 - qQVaQ + ’ﬁ‘(T = 2r g — (Kn + Qn|n\ ‘n|)n + Q|n\Va |7’L‘ Va) (88)

The expression for 1% suggests that the control law 7 should be chosen to include three parts: (1) a nonlinear
P-controller, —(K o+ Kp1n?)it, (2) a nonlinear feedforward term based on the measured propeller revolution
n and the desired propeller revolution ng, and (3) a nonlinear cross-term, —Qn|v,
the axial flow into the propeller. This is the main result of the paper.

n|V,, compensating for

Theorem 2 (GES Nonlinear Observer-Controller Error Dynamics) Consider the nonlinear shaft speed
controller:

T = 7(Kp0 + Kp1n2)ﬁ + 271—Jm7'7fd + (Kn + Qn|n\ |TLD’I7,d - Q|n\Va TL‘ Va (89)
j)f(i(::l trol Reference Feed Forward Awxial Flow Compensalor
with
1 2
Ky >0, Ky > Z(an‘v‘l) >0 (90)

Let the estimate V, be generated by using the nonlinear observer (42)—(43) with qo > 1 in Theorem 1
implying that Koo must satisfy the stronger requirement 2dof3 > 1 + (—do + Ka9)?. Hence, the equilibrium
point (4, V,,7) = (0,0,0) of the observer-controller error dynamics:

M+ D)o +d(v,0,y)=0 (91)

where v = [u, Vo, n|T and:

[ m — Xu 0 0
M = 0 my 0 92)
i 0 0 2nJ,
7K10 — K11 \n| - Xu (1 - t)ﬂmvﬂ ‘TL| 0
D(V) = —Koy — Koq \n| — d() d() + Tlana |TL‘ 0 (93)
i 0 _anlVa |7’L| Kp() + Kp1n2 + K, + Qn|n\ ‘n|
[ (—qu)u |u\ — (quM)Ju — ﬂ,‘ (u — 17,2
dw,oy) = | dr(Va—9)Va—yl—dr(Va—Va—y) ‘Va—Va—y‘ (94)
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Proof. Substituting (89) into (88), yields:
V < —q@® = V7 + Quapy, 1| Vaft = (Kpo + Kpin® + Ky + Qujny [n|)7? (95)
Using the fact that
1 =Y 1 - 252 ~ ¥ 772
- <§inva |7 — Va> = =1 Qv+ Qv [0 Ve = Vg (96)
Hence, the cross term in (95) can be replaced by:

- 1 R | P
Qnlv, In| Ve = — (§Q|nvq n|i — Va) + 3@+ VI (97)

implying that:

) N . 1 N
V < —q@*—(ge-1)V2- <Kp1 - Z(Qn|va)2> n*n?

1 I 2 2 .
- <§Qn|Va, n| n— Va> - (Kpo + K, + Qn|n\ |7’LD n2
< O,Va#0,V, 40,70 (98)

Hence, according to Lyapunov stability theory the equilibrium point (i, V,,7) = (0,0,0) of the observer-
controller error dynamics (91) is GES if q1 > 0,¢2 > 1, Kpo > 0 and Kp; > (1/4)(Qupy, ). ®

7 Extensions to Integral Control

When implementing the shaft speed propeller controller, it is important to include integral action in order
to compensate for non-zero slowly-varying disturbances and unmodelled dynamics. This can be done by
augmenting a constant bias term b to (82) according to:

2rdpn = —Kyn+1—Q(n,V,) +b (99)
b = 0 (100)

Choosing the nonlinear control law of PI-type with reference feedforward and axial flow compensation, that
is:

T = —(Kp+Kan®i—b + 2nJnng+ (K, + Quinl M) = Qpuyv, I Va (101)
PI-CS,HU'OI Reference F:cd Forward Axial Flow Compensator
b = Kin, K;>0 (102)
implies that (91) takes the form:
X, = h(Xl, t) +gre+d (103)
By = —K,g'xy (104)
withx; =v e R, 2o =b—bec R and
h(x),t) = —M7'D(x, +va(t))x: (105)
0 0
g = M| 0 |= 0 (106)
_1 7271}]777,
d = Ml (107)



where we have used that v = x; + v4. The error dynamics (103)—(104) is a nonlinear non-autonomous
system complicating the Lyapunov stability analysis since V <0is only negative semi-definite. Hence,
LaSalle-Krasouskii’s theorem for invariant manifolds cannot be used (Khalil [11]) to prove uniformly globally
asymptotic stability (UGAS). However, UGAS and uniformly locally exponentially stability (ULES) of the
equilibrium point (x¥,23) = (0,0,0,0) of the error dynamics (103)—(104) can be proven by applying the
main result of Loria, Fossen and Teel [15] which is a theorem for ”backstepping with integral action”. The
interested reader is recommended to consult [15] for the technicalities regarding the proof.

8 Case Study

In the simulation study the following two controllers were compared:

e Nonlinear output feedback integral control where the nonlinear observer (Theorem 1) was simulated by
using the following gains:

B = —10X,
K10 = 1.0-(m—Xa), Kg():().l-mf
K11 = 0.005 - (TTL - qu), K21 =-30

while the control gains in (Theorem 2) were chosen as:
1
Kpo =10, Kp =7(Qmy,)* K =10

When simulating the observer-controller it is noticed that performance improvements can be obtained
by reducing the controller gains in particular if the measurements are noisy. It is well known that the
gain requirements imposed by the Lyapunov analysis are rather conservative. Moreover, the closed-
loop system can be exponential stable for much smaller gains than those given by Theorem 2. In fact,
we noticed that the performance was significantly improved when K, was reduced by a factor of 10
and this did not affect the stability of the closed-loop system.

o (Conventional shaft speed control of Pl-type:
t
T=-Ky(n—nq) - K; / (n —ng)dr (108)
0
with
K,=100, K;=1.0

For both controllers the torque controlled representation of the DC-motor (125) was used.

8.1 Model Parameters

The model parameters are given in Table 1. The propeller characteristics were taken from an experiment
with a full-scale propeller, see Figure 4.
Least-squares curve fitting of K7 and K¢ gave the following results (straight lines in Figure 4):

Kp = —0.9435 Jo + 0.4243 (109)
Ko = —0.1212 Jy+ 0.0626 (110)

Even though this over-all linear approximation is crude, in particular for reverse conditions (Jy < 0), the
observer observer is able to cope with the model inaccuracies and give a useful estimate of V.
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C_ » - 1000 (kg) D =  030(m |
[ X. - 0.05m (kg) p — 1025 (kg/ud) |
[t =~ I R
” Xu\u| — %pCdAsurge (kg( ) t - 0.1 ”
[ 4 = ;;L:L (kg/s) T = 10 (kgm?) |
[ o = (ke/m) Ca 1.0 |
[ my = pAly (kg) Agurge = 1.0 (m?) ||
1 = 0.30 (m) v 1.0 |
|| Athruster — ™ (%)z (mQ) ||
Table 1: Model parameters.
s Thrust & torque coefficients for propeller
1
0.5
g

Figure 4: Experimental results for Kp and 10K versus Jy (circles) and least-squares fits to a straight line

(solid lines).

-0.5

i i i i i
-0.2 0 0.2 0.4 0.6
J - advance number

8.2 Discussion of Simulation Results

The control laws were simulated by commanding a reference thrust of T; = 100 (N) which was shifted to
Tq = —100 (N) at t = 30 (sec), see Figure 6. The results form the simulation study can be summarized

according to:

Estimation of Advance Speed Figure 5 shows the performance of the nonlinear observer is shown. Both
estimation errors V, =V, =V, and i = u — @ (upper plots) are zero mean white noise processes. Even
though the surge measurement u and shaft speed measurement n are corrupted with white noise with
amplitudes 0.1 (m/s) and 0.1 (rps), and standard deviations of ¢ = 0.0335 in the simulation study,
excellent convergence of V, — V, is obtained (lower left plot). The estimate Va is, however, more noisy
than its true value V,. This can be further improved by tuning of the observer gains. In addition, we

i
0.8

see that we obtain good filtering of the noisy signal u (lower right plot).

Thrust Tracking Capabilities From Figure 6 it is seen that the output feedback integral controller has

excellent thrust tracking capabilities (lower plots) while an offset in thrust is observed for the PI-
The desired thrust 7; = £100 (N) is transformed to shaft speed reference
signals n4 and ng by using (76)—(77). The offset in thrust for the PI-controller is due to variations in

controller (upper plots).
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shaft speed V,. This is seen by plotting the components:

Ty = Tn|n|n |7’L‘ ) QO = Qn|n\n |7’L‘ (111)
v = Ty, InlVa, Qu==Qpuyv, In|Va (112)

together with the total thrust 7" = Ty + 77 and torque @@ = Qo + Q1. The Pl-controller tracks
T = Ty = Ty (the term T is not available since V,, is unknown when using a PI-controller) while
the nonlinear output feedback integral controller uses the estimate V, to track the total thrust 7 =
To + 11 = T,. Another benefit of using the nonlinear observer in conjunction with an output feedback
integral controller is that the estimate V,, can be used to compute a more accurate shaft speed reference
ng from T4. This is seen from (76) where V, is needed.

RPM Tracking Capabilities and Motor Torque Commands Figure 7 shows the shaft speed tracking
performance for the two controllers and the corresponding motor torque commands (control inputs).
Since the PI-controller does not use model information a high gain is needed in order to obtain good
RPM tracking capabilities. This results in more noisy motor torque control signals then for the model-
based nonlinear output feedback integral controller. It is also seen that the tracking performance for
the nonlinear controller is better than the PI-controller mainly due to compensation of advance speed
effects.

9 Conclusions

A high performance nonlinear output feedback integral controller for propeller shaft speed was presented in
this paper. The control law was designed by first designing a nonlinear observer for the propeller axial flow
(advance speed) and next using observer backstepping to produce a globally exponentially stable controller.
The control law was also modified to include integral action resulting in a uniformly globally asymptotically
and uniformly locally exponentially stable integral controller. The proposed output feedback controller was
shown to be robust for disturbances in propeller revolution and torque.

The case study was an unmanned underwater vehicle propulsed with a single main propeller. The
propeller was assumed driven by a DC motor and a simulation study was used to demonstrate the tracking
capabilities of the observer and controller. The observer was capable of producing accurate estimates of
the advance speed. Hence, this estimate could be used to compensate the effect of advance speed on the
propeller thrust and torque. The estimate of the advance speed could also be used to compute more accurate
set-points for the vehicle speed controller since the thrust commands could be more accurately mapped to
propeller revolution commands.
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Appendix A: DC-Motor Dynamics

Consider a DC-motor (Fossen [8]):

d
Laaim - *Raim - KWme + ‘/7?’7, (113)
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where V,, is the armature voltage, i,, is the armature current, w,, is the propeller revolution and @ is the
load from the propeller. In addition, L, is the armature inductance, R, is the armature resistance, K, is
the motor torque constant and J,, is the rotor moment of inertia. Let n denote the propeller shaft speed in
revolutions per second. Hence:

Wi = 27T (115)

Since the electrical time constant T, = L, /R, is small compared to the mechanical time constant, time scale
separation suggests:

L, d .
R_a%%n ~0 (116)
Hence, the shaft speed dynamics is given by:
0 = —Ryim —2rK,n+V, (117)
2ndpmn = Kpipm —Q (118)

Motor Current Control
The motor current can be controlled by using a P-controller:
Vip = Kp(ig — i), K, >0 (119)
where i4 is the desired motor current. From (117) we get:
(Ro + Kp)ipy = =21 Kpyn + Kpig (120)
The motor dynamics (118) for the current controlled motor therefore takes the form:

2rK2,  K,K, .

27 Ty = —
wJ, n+Ra+Kpn Ra+KpZd

Q (121)

If a high gain controller K, > R, > 0 is used, this expression simplifies to:

2 Tt = Komiag — Q (122)

Motor Torque Control

For a DC motor the motor torque will be proportional with the motor current. Hence, the desired motor
torque Q4 can be written as:

Qd = Kpiq (123)
From (121) we see that this yields the following dynamics for a torque controlled motor:

2rK?2, K,
n —=
Ro+ K, R.+K,

27 Iyt + Qa—Q (124)

which reduces to

it = Qg — Q (125)

for K, > Ry > 0.
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Motor Voltage Control
Motor voltage control is obtained by combining (117)—(118) to yield:

wK2 K,
iy, = Sy (126)

27 I
Tmn + R, R.

Unified DC-Motor Control Model

Based on the three models presented above, a unified control model for the DC-motor shaft speed dynamics
can be written:

2ndpn + Kpyn=7—Q (127)

where motor woltage, current and torque control are obtained by choosing the control input 7 and linear
damping coefficient K,, according to Table 2:

|| || control input 7 || Linear damping K, ||

e 2n K
” Voltage ” Vi “ R,
K, K, . 2r kK,
Current || et “ ”
i 2r K>
D —_—T
|| Torque ” TR +Kde ” Ro K, ”

Table 2: DC-motor control model.
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Figure 5: Upper plots: estimation errors V. and @ versus time. Lower plots: actual advance speed V,, and
measured surge speed u together with their estimates V,, and 4 versus time.
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T,.=100 (M)

Figure 6: Thrust 7" and torque @ for plots for a conventional PD-controller (upper plots) and the nonlinear
output feedback controller (lower plots) versus time. Notice the offset in thrust for the PD-controller (no
compensation of advance speed).
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Figure 7: Actual, n, and desired, ng, propeller revolutions, tracking errors, n — ng, and motor torque, g,
commands for a conventional PD-controller (upper plots) and the nonlinear output feedback controller (lower
plots) versus time.
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