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Abstract

It is studied how the introduction of ordered hierarchies
in 4-regular grid network structures decreases distances re-
markably, while at the same time allowing for simple topo-
logical routing schemes. Both meshes and tori are consid-
ered; In both cases non-hierarchical structures have power-
law dependencies between the number of nodes and the dis-
tances in the structures. The perfect square mesh is intro-
duced for hierarchies, and it is shown that applying ordered
hierarchies in this way results in logarithmic dependencies
between the number of nodes and the distances, resulting
in better scaling structures. For example, in a mesh of
391876 nodes the average distance is reduced from 417.33
to 17.32 by adding hierarchical lines. This is gained by
increasing the number of lines by 4.20% compared to the
non-hierarchical structure. A similar hierarchical extension
of the torus structure also results in logarithmic dependen-
cies, the relative difference between performance of mesh
and torus structures being less significant than for non-
hierarchical structures, especially for large structures. The
skew and extended meshes are introduced as variants of the
perfect square mesh and their performances studied, and it
is shown that while they allow for more flexibility in design
and construction of structures supporting topological rout-
ing, their performances are comparable to the performance
of the perfect square mesh. Finally suggestions for further
research within the field is given.

Keywords: Topological Routing, Routing, Network
Structures, Large-Scale Networks, Network Planning

1 Introduction

Routing schemes applied in large-scale networks such
as the Internet have until recently operated on a best-effort

basis only. This has been sufficient for many applications
such as email, news, webbrowsing and file transfers, but
the needs for reliable connections are increasing as the de-
pendency on communication networks grows: As a con-
sequence of the convergence of communications, several
different medias are becoming able to communicate over
the same physical lines such as telephony, television, video
and data traffic. At the same time an increasing amount of
control and distributed applications are being developed to
communicate over the Internet, such as the many teleoper-
ation and telerobotics projects, e.g. [1][2][3]. This conver-
gence of communications is expected to continue in near as
well as far future[4].

Routing schemes based on large tables are under severe
pressure in today’s Internet. In 2001 experiments showed
that it took on average three minutes to recover from inter-
domain path failovers. For some path failovers it took up
to 15 minutes before the routing tables were stabilished[5].
The dependency on exact and updated tables is a major
problem for the routing schemes, since the size of the In-
ternet makes it impossible to maintain updated tables of
the complete Internet topology; Not only would this re-
quire huge tables, it would also be extremely bandwidth and
ressource demanding to keep them updated. Furthermore,
the provisioning of two or more physical independent end-
to-end paths is necessary in order to provide connections
that are reliable even in case of equipment failures, broken
cables etc, and even if routing tables are exact and updated,
this is an extremely difficult task in todays complex Internet
topology.

Reducing the needs for large tables while at the same
time offering easy ways to determine several independent
paths, can be done by designing networks with global struc-
tural and topological properties such as the 4-regular grid
network structure[6] (which is actually not 4-regular since



edge and corner nodes have degree lower than four). It is
suggested a base for a future access network infrastructure,
making the study of it highly actual: Many countries are
expected to let fiber networks replace the existing copper-
based infrastructures in near future, and for these infras-
tructures to benefit from global structural and topological
properties it must be well planned. Changing the physical
structure after implementation is costly due to the high duct
costs, and the physical structures are expected to have long
lifetimes as the networks are upgradeable by changing end
equipment only. This paper shows how hierarchical exten-
sions of the 4-regular grid network structure can be used for
reducing distances, especially in large-scale structures.

2 Terminology

Abstractions of networks, called structures, are studied.
A structure consists of a set of nodes and a set of lines,
such that each line connects two nodes. Lines are con-
sidered undirected: If a pair of nodes(u, v) is connected
by a line, so is(v, u). A path between a source node
u and a destination nodev is a set of nodes and lines
(u = u0), e1, u1, e2, u2, en−1, un−1, en, (un = v), where
each lineei connects the nodesui−1 andui. The path length
is determined by the number of lines between the source and
destination node; In the case above, the path is of lengthn.
The distance between two nodesu andv is writtend(u, v)
and is equal to the length of the shortest path betweenu and
v. Note thatd(u, v) = 0 if and only if u = v. The size of
a structure is equal to the number of nodes it contains. The
degree of a node is the number of lines joined to it.

3 Background

Structural QoS[4] and Sustainable QoS[7] were intro-
duced recently and deal with parameters related to architec-
ture and structural properties of networks. This motivatesan
approach of designing physical network infrastructures that
are able to support reliability and QoS demanding applica-
tions. [6] investigates an approach of designing network
structures which by their high degree of regularity support
a simple and essentially table-free routing scheme known as
topological routing. It is shown how topological routing can
solve a large number of the problems faced in todays rout-
ing schemes, but the networks must be well structured and
organized for such a scheme to work. It suggests that the 4-
regular grid structure is used for topological routing: The
nodes are addressed from a cartesian coordinate system,
such that every node has a coordinate address(x, y) asso-
ciated to it: Letdimx anddimy be positive integers. Then
every integer coordinate set(x, y), such that0 ≤ x ≤ dimx

and0 ≤ y ≤ dimy, is the address of a node. Every node has
associated to it such an address, and no two nodes have the

same address. Two variants are used, the mesh and torus.
In the mesh, a line between two nodes(x1, y1) and(x2, y2)
exists if and only if|x2 − x1| + |y2 − y1| = 1, in the
torus additional lines exist connecting nodes where either
|x2 − x1| = dimx andy1 = y2 or |y2 − y1| = dimy and
x1 = x2.

A packet is routed from source to destination in such a
structure on a hop-by-hop basis: In every node it is for-
warded to a node with the smallest possible distance to the
destination, which is easily determined. The packet only
needs to carry its destination address, and every node only
needs to know the adresses of its neighbours. In the torus,
every node must also knowdimx anddimy.

While such structures are used for multiprocessor sys-
tems, and much research in this area has dealt with them
(e.g. [8][9]), they suffer from severe scalability problems in
order to be used for large-scale networks: There is a power-
law dependency between the number of nodes and distances
in the structures. For example the average distance in a
square mesh structure of 10000 nodes is 66.67. This should
be compared to the following: In 1998 average path lengths
of the Internet was measured, and it was shown that the
Internet at that time had an average path length of around
11-24, depending on location[10]. In 1999 appr. 88000 dif-
ferent nodes (routers) were found in the Internet[11].

Hierarchical extensions of the 4-regular grid structure
were introduced in [6]: A set of hierarchical lines is
added to a structure, such that a revised topological rout-
ing scheme is supported, while at the same time the dis-
tances are shortened. The revision of the routing scheme is
based on the fact that deciding whether routing should be
done in higher hierarchies is done in each node, provided
knowledge of a few global parameters. If routing is to be
done through a higher hierarchical layer, a shortest path can
always be found using the closest higher hierarchy node,
which is easily determined. When the highest layer to be
used is reached by the packet, the basic routing scheme is
used. As a result, a shortest path between any two nodes is
easily determined, taking the hierarchical lines into account.

In this paper such a way of constructing hierarchical
lines is evaluated by studying how the addition of such lines
decreases distances.

4 Methods

Structures are evaluated by calculating and comparing
distances. Letu1, . . . , un be the nodes of a structure. Then
for every nodeuj , the average distance fromuj to all other

nodes is calculated asdavg(uj) =

∑

i: i6=j, 1≤i≤n

d(ui, uj)

n−1
. Three

measures are used for evaluation: Average distance, worst-
case average distance and diameter. The average distance



Figure 1. The perfect square mesh with g = 5

and nH = 2. It is indicated how the distance
between the two marked nodes has been re-
duced from 34 to 12 by hierarchical lines.

is given by

∑

j: 1≤j≤n

davg(uj)

n
and the worst-case average dis-

tance by the maximum value ofdavg(uj) over all j such
that 1 ≤ j ≤ n. The diameter is the maximum value of
d(ui, uj) over all distinct values ofi andj, 1 ≤ i, j ≤ n.
All calculations were performed with computer aid. How-
ever, only a subset of the calculations were necessary to per-
form due to symmetries.

The hierarchical extension of a mesh structure is given
as follows: Granularitiesgx and gy are positive integers,
chosen for each direction. The number of hierarchical lay-
ers nH must also be chosen among the positive integers.
For 0 ≤ x ≤ dimx and 0 ≤ y ≤ dimy every node
u = (x, y) such thatx ≡ 0 (mod gi

x) andy ≡ 0 (mod gi
y),

1 ≤ i ≤ nH , is said to belong to theith hierarchical layer.
The lines of this layer connectsu to the nodes(x + gi

x, y),
(x − gi

x, y), (x, y + gi
y) and(x, y − gi

y) that exists in the
structure.gx andgy must be chosen odd in order to support
the revised topological routing scheme, and so this is also
assumed. Note that a node belonging to theith hierarchical
layer also belongs to everyjth hierarchical layer,j < i.

The main model used is the perfect square mesh. In ad-
dition to the conditions abovegx = gy (simply writteng)
and dimx = dimy = gnH . This model is highly regu-
lar and symmetric but has a drawback concerning flexibil-
ity: Given a specified granularity only a few distinct val-
ues ofdimx and dimy within a specified range are sup-
ported. As a result, only structures of certain sizes can be
constructed. For example in case ofg = 5, only struc-
tures of size 36, 676, 15876, 391876, 9771876, etc. ex-
ists. An example of the perfect square mesh is shown
in fig. 1. A similar model is used for the torus struc-
tures, except thatdimx = dimy = gnH − 1. The hier-
archical lines are defined slightly different, such that each
nodeu = (x, y) of the ith layer is connected by hierar-

 1

 10

 100

 1000

 10000

 1  10  100  1000  10000  100000  1e+06

D
is

ta
nc

es

Number of nodes

Mesh -  diameter
Torus - diameter

Mesh - worst-case average
Mesh - average

Torus - average & worst-case average

Figure 2. Distances in non-hierarchical mesh
and torus structures.

chical lines to the nodes(x + gi
x (mod (dimx + 1)), y),

(x−gi
x (mod (dimx+1)), y), (x, y+gi

y (mod (dimy+1)))

and(x, y − gi
y (mod (dimy + 1))) that are different from

u, wherea (mod b) = kb + a, k being the smallest integer
such thatkb + a ≥ 0. This definition implies that thenth

H

hierarchical layer contains no lines.
Perfect square mesh and hierarchical torus structures

with g = 3, 5, 7, 9, 11 were evaluated, and for each value
of g a number of different values ofnH were used. Two ad-
ditional sets of calculations were performed, dealing with
variants of the perfect square mesh. The skew mesh is the
first variant, and the restrictions of the perfect square mesh
relaxed such thatgx 6= gy, and consequentlydimx 6= dimy.
This allows for more flexiblity in the design, and might be
used for designing structures of different sizes and shapes.
The structures were evaluated forgx = 3 andgy = 11, and
the performance compared to the perfect square mesh. The
other variant is the extended mesh, which can be obtained
from a perfect square mesh with the interval for node co-
ordinates changed such that−⌊dimx

2
⌋ ≤ x ≤ ⌊ 3dimx

2
⌋ and

−⌊
dimy

2
⌋ ≤ y ≤ ⌊

3dimy

2
⌋. This structure was evaluated for

g = 5, and compared to the perfect square mesh.

5 Results

The results are illustrated in fig. 2-10. For every choice
of granularity a limited number of calculations was per-
formed: For the selected values ofg all structures of size
appr. 100000 and smaller were considered, with a few cal-
culations for larger structures as well.

Despite the small number of calculations, we believe that
the indications of logarithmic dependencies are reliable due
to the well ordered structure. This is supported by two
facts. First, the structures withg = 3 and g = 5 allow
for the largest number of calculations for each structure,
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Figure 4. Worst-case average distances in hi-
erarchical torus.

and they all show virtually perfect logarithmic dependen-
cies between structure sizes and the various distance mea-
sures. Second, the diameter does clearly increase linear
with nH , and therefore close to logarithmic with the num-
ber of nodes. This is true for both the hierarchical torus, the
perfect square mesh and the variants for all values ofgx and
gy. Some measurements of very small structures seem to
differ slightly from the rest, but all structures soon approxi-
mate a logarithmic dependency.

Fig. 2 shows how the non-hierarchical approach results
in power-law dependencies between the number of nodes
and distance measures. Even though distances are shorter
in the torus than in the mesh, none of the structures scale
well, and in large structures distances are huge.

These results should be compared to the distances in the
hierarchical torus shown in fig. 3-5 and perfect square mesh
shown in fig. 6-8. The logarithmic dependencies between
the number of nodes and distances is interesting, but it is
also worth noting that the distances are kept reasonable low,
even for very large structures. For example, the hierarchical
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Figure 5. Diameters in hierarchical torus.
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Figure 6. Average distances in perfect square
mesh.

torus withg = 5 andnH = 3 is a structure of size 15625
with average distance 11.76, worst-case average distance
14.70 and diameter 20. The non-hierarchical torus of same
size has average distance and worst-case average distance
62.50 and diameter 124. This gain is obtained by adding
1300 lines to the original 31250, an increase of 4.16%.

The perfect square mesh shows the same pattern as the
hierarchical torus. Among the non-hierarchical structures,
the torus performs considerably better than the mesh, but
for the hierarchical extensions the relative differences are
smaller, especially for large structures.

The perfect square mesh withg = 5 andnH = 3 con-
tains 15876 nodes with average distance 12.48, worst-case
average distance 15.96 and diameter 22. A square mesh
structure of this size, without the hierarchical extension,
has corresponding distances 84.00, 125.01 and 250. The
number of lines is 32864, while it is 31500 in the non-
hierarchical structure, an increase of 4.33% or 0.086 lines
per node. g = 5 and nH = 4 gives a perfect square
mesh of size 391876. In this case, average distance, worst-
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Figure 7. Worst-case average distances in
perfect square mesh.
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case average distance and diameter are 17.32, 22.39 and
30 respectively. These should be compared to the non-
hierarchical structure of the same size, with correspond-
ing distances 417.33, 625.00 and 1250 respectively. The
number of lines in the non-hierarchical structure is 782500,
while it is 815364 in the hierarchical extension, an increase
of 4.20%, or 0.084 lines per node.

As expected, the smallerg is chosen, the shorter the
distances are. On the other hand, for small choices ofg

more lines are added.g = 3, the smallest possible, and
nH = 5 gives a structure of size 59356, with average
distance, worst-case average distance and diameter 12.21,
15.13 and 20 respectively. 15004 lines are added to the
non-hierarchical structure of 118584 lines, an increase of
12.65%, or 0.25 lines per node. Without hierarchies the
corresponding distances are 162.67, 243.00 and 486.

Fig. 9 and fig. 10 show the performances of the variants
of the perfect square mesh, compared to the perfect square
mesh with performance closest to those of the variants.

The skew mesh withgx = 3 and gy = 11 performs
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similarly to the perfect square mesh withg = 9 in terms
of both average distance, worst-case average distance and
diameter. The skew mesh does, however, require a larger
number of hierarchical lines. Since no structures of compa-
rable size exist this can be seen by comparing the number
of hierarchical lines relative to the number of nodes. The
perfect square mesh of size 6724 and 532900 have 0.027 re-
spectively 0.025 hierarchical lines per node, while the skew
mesh of size 37296 has 0.064 hierarchical lines per node.

The extended mesh withg = 5 performs comparable
to the perfect square mesh withg = 5, with only slightly
larger diameters and worst-case average distances. All
distance measures are approximating those of the perfect
square mesh for large numbers of nodes. As with the skew
mesh, it is not possible to compare two structures of the
same size, because only structures of different sizes are sup-
ported. Since the granularity is the same for both variants,
the number of hierarchical lines are close to each other, be-
ing only a bit smaller for the extended mesh. The extended
mesh of size 62500 has 0.081 hierarchical lines per node.



6 Discussion and conclusion

It was shown that ordered hierarchies as introduced are
useful for reducing distances in 4-regular grid network
structures significantly, especially for large-scale structures.
The main model used was the perfect square mesh and its
torus counterpart. While there is a power-law dependency
between the number of nodes and average as well as worst-
case average distances in the non-hierarchical structures,
the corresponding dependencies for the hierarchical struc-
tures are logarithmic and leads to noticeable smaller dis-
tances. For example, the perfect square mesh withg = 5
andnH = 4 is a structure of size 391876 with average dis-
tance only 17.32, compared to an average distance of 417.33
for a similar sized mesh structure without hierarchies. The
performance difference between mesh and torus, which is
noticeable for non-hierarchical structures, is considerably
smaller for the hierarchical structures, especially for large
structures. Even for small values ofg the number of hierar-
chical lines added to the structure is quite small compared
to the total number of lines. Even though these hierarchical
lines are longer than the non-hierarchical lines in the sense
that they connect nodes with larger distances in the basic
structure, they can follow the same ducts, minimizing the
costs. The small number of hierarchical lines implies a sim-
ilar limited increase in the node degrees, which is another
important cost factor.

Two variants were introduced as alternatives to the per-
fect square mesh, the skew mesh and the extended mesh. As
both show logarithmic dependencies between size and dis-
tances, they can be used in concrete network planning when
no suitable perfect square mesh exists.

However, the skew mesh has a drawback since more hi-
erarchical lines are used for this structure than for a perfect
square mesh of the same size and performance. An alter-
native to this structure, which may prove to be better, is
obtained by placing a number of perfect square mesh struc-
tures adjacent to each other, connected at the edges. This
allows for more different shapes than the skew mesh, but
further research is required for evaluation of such an ap-
proach.

On the other hand, the extended mesh has performance
almost as good as the perfect square mesh, using even
slightly fewer hierarchical lines per node. It may be use-
ful for constructing structures of sizes different from what
is supported by the perfect square mesh. It may also be pos-
sible to use it as a base for constructing cheaper and better
performing hierarchical structures than the perfect square
mesh, where more nodes are placed closer to higher hierar-
chical nodes, reducing especially diameters and worst-case
distances.

With this contribution, the 4-regular grid structures have
been shown to form a suitable base for fiber-based access

networks, offering high connectivity and reasonably small
distances. However, efficient protection and restoration
schemes still have to be developed for hierarchical exten-
sions of the structures.

In order to create a cost-efficient alternative to the ring
structures widely used today it should also be considered
if the number of lines, and consequently the average node
degree, could be reduced. As the number of hierarchical
lines is small compared to the total number of lines even
for small values ofg, focus should be on the lines of the
basic structure. A scheme reducing this number, and thus
the connectivity, while maintaining the support of topolog-
ical routing and relatively short distances would be a major
contribution here.

Acknowledgements

The authors would like to thank University College
Dublin for hosting J. M. Pedersen and T. P. Knudsen as vis-
iting researchers during the work of this paper.

References

[1] Kuk-Hyun Han, Yong-Jae Kim, Jong-Hwan Kim, and Steve
Hsia. Internet control architecture for internet-based per-
sonal robot.Autonomous Robots, 10, Issue 2:135–147, 2001.

[2] N. Xi and T. J. Tarn. Planning and control of internet-based
teleoperation.Proceedings of the SPIE - The International
Society for Optical Engineering, 3524:189–195, 1998.

[3] Li Xiao-ming, Yang Can-jun, Chen Ying, and Hu Xu-dong.
Hybrid event based control architecture for tele-robotic sys-
tems controlled through internet.Journal of Zhejiang Uni-
versity SCIENCE, 2004 5(3), pages 296–302, 2004.

[4] Ole Brun Madsen, Jens Dalsgaard Nielsen, and Henrik
Schiøler. Convergence.RTLIA 2002, Wien, 2002.

[5] Craig Labovitz, Abha Ahuja, Abhijit Bose, and Farnam Ja-
hanian. Delayed internet routing convergence.IEEE/ACM
Transactions On Networking, 9(3):293–306, June 2001.

[6] Jens Myrup Pedersen, Thomas Phillip Knudsen, and
Ole Brun Madsen. Topological routing in large-scale net-
works. ICACT 2004, Korea, 2004.

[7] K. Murakami and H. S. Kim. Virutal path routing for surviv-
able atm networks.IEEE/ACM Transactions On Networking,
February 1996.

[8] Jie Wu. A fault-tolerant and deadlock-free routing protocol
in 2d meshes based on odd-even turn model.IEEE Transac-
tions on Computers, 39(9), September 2003.

[9] Ming-Jer Tsai and Sheng-De Wang. Adaptive and deadlock-
free routing for irregular faulty patterns in mesh multicom-
puters. IEEE Transactions in Parallel and Distributed Sys-
tems, 11(1), January 2000.

[10] Aiguo Fei, Guangyu Pei, Roy Liu, and Lixia Zhang. Mea-
surements on delay and hop-count of the internet.Proceed-
ings of Globecom 1998, Sydney, Austrualia, 1998.

[11] Hal Burch and Bill Cheswick. Mapping the internet.IEEE
Computer, 32, Issue 4:97–98,102, 1999.


