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Optimal Calculation of Residuals for ARMAX Models with Application to
Model Verification

T KNUDSEN*

August 1997

Abstract

Residual tests for sufficient model orders are based on the
assumption that prediction errors are white when the model is
correct. If an ARMAX system has zeros in the MA part which
are close to the unit circle, then the standard predictor can
have large transients. Even when the correct model is used
there will be large correlations in the transient phase. In this
case the standard residual tests are therefore not suitable. A
new method based on backforecasting is therefore developed.
Simulation and analysis shows that the new method gives the
right answer where the standard method is misleading.

1 Introduction

Model verification is an important part of system identifica-
tion. Statistical methods exist to test if the model has too
many or too few parameters. These tests are based on the
assumption that the optimal one step prediction errors are
white noise when the correct model structure and the correct
parameters are used.

Using the standard formulas for predicting the output from
an ARMAX system, the prediction error are in general not
white before a transient phase has passed. This is true even
when the correct model and parameters are used. Thus, the
statistical methods are based on asymptotic properties which
of course are not true for all samples.

The question addressed by this paper is: Does this have
any influence on the validity of the tests, and if so, for which
models are the influence significant.

The approach is to first take a closer look at the predictor
in order to analyze the statistical properties of the prediction
error. This will enable us to specify the problem in more
detail. Some different solutions are discussed. The standard
procedure is then compared to the most promising solution
by simulation and analysis. Finally a conclusion is made.

The transient nature of the prediction errors has of course
also consequences for the well known prediction error method.

*Institute of Electronic Systems, Department of Control Engineering,
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Readers are referred to [1, 2] where similar problems concern-
ing parameter estimation are discussed and generalizations
needed for general SISO models are presented.

The notation follows [3] and is explained as used. Notice
that convergence involving random sequences are convergence
in mean square sense.

2 ARMAX models and the one step
predictor

The ARMAX model can be formulated as (1)-(2) where
ID(0,0?) is short for independent distributed with mean 0
and variance 2. Notice that A(q) and C(g) are monic and
that a unit time delay from u to y is assumed for simplicity.
Assume also that C(q) is stable.

A(g)y(t) = B(g)u(t) + C(g)e(t) , e(t) € ID(0,0) (1)
Ag) =1 +a1q e tagg
B(q) = biq “+bn, g™ (2)
C(Q) =1+ cq 1+---+cncq’"c

The optimal one step predictor is given in (3).
. Blg . Cl-AQ)

To calculate the right side of (3) we need measurements of
v and y from time ¢ — 1 and back to the infinite past. In
this case, that is the stationary case, the prediction error €(t)
(6) equals the noise e(t) and the predictor is truly optimal.
However we do not have measurements back to the infinite
past so consequently an initialization procedure has to be
chosen.

If the parameter vector, the signal vector and the prediction
error are defined as in (4)—(6), the optimal predictor can also
be written as (7).

0= (a1,a2,...,an,,b1,b2,...,by,

% (4)

3C15,C2y ... ,Cp



e(t) = (—yt —1),...,—y(t — na)
su(t —1), ..., u(t —nyp) (5)
et —1),...,e(t —ne)T
e(t) =y(t) —9(t) (6)
g(t) = ¢(1)76 (7)

Let us define the time for the first measurement as 1. Then
the predictor can be calculated by (6)—(7) for t > t5 , ts =
max(ng,np) + 1, when it is initialized by (8).

So(ts) = (_ ( - 1) _y(ts - na)
( — 1), ults — ) (8)
,0)F
e(ts — 1) e(t —n.) =0 (9)

The idea behind this reasonable procedure is not to start
predicting until the measurements of u,y needed in ¢ are
available and at that time to set the missing prediction errors
to the unconditional mean for e i.e. zero. This initialization
procedure is also suggested by [4, p 491] and [3, p 277], and
it will be called the direct start (DS).

3 Autocovariance function for the
prediction error when using the di-
rect start

Now it is possible to make a theoretical calculation of the
autocovariance function for the prediction error. To do this
we need a stochastic model for €, that is to say, a model with
u and e as inputs.

e(t) =y(t) —4(t)
=y(t) — [(1 = A()y(t) + B(q)u(t)
+(C(g) — 1e(?)]
= A(@y(t) — B(g)u(t) + (1 — C(g))e(t)
= C(gle(t) + (1 — C(q))e(t) =
Clg)e(t) = Clgle(t) , t > ts (10)
The first prediction error (11) has the variance (12).
e(ts) = = i cie(ts —i) = (11)
=0
D=ty e (12)
=0

At this point we notice that:

o All statistical properties for €(t) are specified by C and
o.

o €(t) > e(t) as t = 0.

e The variance for the first prediction error will in general
grow with the degree of C(gq). For a first order system
V(e(ts)) = 0*(1 +¢f) < 20°.

State space models are convenient for analysis of time vary-
ing properties. Consequently we will rewrite (10) and (9) into
spate space form.

First define a new variable z by (13). Notice that z only

depends on e(t) for t € [ts — n.,ts — 1]. Therefore z(t), e(t)
are uncorrelated when ¢ > t,.
z(t) = €(t) — e(t) (13)
(10) & C(g)z(t) =0, t > t,
(9) = 2(t) = —e(t) , ts —n. <t <t;—1

The state vector x is defined by (14). And the state space
models then become (15)—(16) with the initial conditions(17)—
(18).

z(t) = (2(t),2(t =1),... ,2(t = n. + 1))T (14)
z(t) =®x(t—1), t >t (15)
€(t) =Txz(t) +e(t), t >ts (16)
—c1 —cy —c3 —Cn,
1 0 0 0
o—| 0 1 0 0
0 0 1 0
T=(1,0,...,0)
olts=1) = (s = s 1306 = )"
—(e(ts —1),... e(ts —n))T = 1)
Cov[z(ts — 1)] =0’ (18)

From above it follows that z(t2) and e(t1) are uncorrelated
when t2,t1 Z ts.

Using all this it is not difficult to find the autocovariance
function for .

(15) = x(t)
Covlz(t)] = o2Pt—(t—D gt—(t.—1)T

=¢ Vg, —1), t>t, =

Covle(ta), e(t1)]
= Ele(ta)e(t1)"]
= E[(Tz(t2) + e(t2))(Tz(t1) + e(t1))"]
= E[(T®~®Yy(t, — 1) + e(ta))
x (DL =tV gt — 1) + e(t1))"]
= 0’ Td (=Dt =D TTT o Fle(ty)e(tr)] =



Covle(t2), (t1)]

B {Uzrq,tz—(ts—1)q>t1—(ts—1)TFT s ta F

U2F¢t2—(ts—1)(I,t1—(ts—1)T1-\T 102 =t
If a new time scale (19) is defined then 7 = 1 & t = ¢,
i.e. the time for the first prediction. This makes the formulas
somewhat concise.
T=t—(ts — 1) (19)
The variance and autocovariance for the prediction error then
becomes:

Vie(n)] = oc?(T® @17 +1), > 1 (20)
Covle(r2), €(1)]
_ | oTemenITT , T, >, AT
- o2Td2—T1 ™ enIT > > 1
(21)

Because (15)—(16) is a state space model for the transfer
function model (10) the eigenvalues for ® equals the zeros for
C(q). The eigenvalues are then inside the unit circle, thus
T 5 0as T — o0.

Based on (20)—(3) we can now conclude:

VIe(r)] = 0 as T = o0

Covle(2),e(m1)] — 0 as

TIOr T2 OF |[To —T1| > 00, 71 # T2

e The closer the zeros for C(gq) are to the unit circle, the
slower the convergence becomes. |Covle(z),€(m1)]| and
V]e(r)] will be larger than the stationary values at the
beginning of the measurements.

4 Consequences for residual tests -
DS start

In the previous section we saw that the statistical properties
for the prediction error have a transient phase. The analysis
also indicated that the transient is largest for system with
C(q) of high order and with zeros close to the unit circle.
A very important question to be answered now is: Do the
transients have any significant impact on the residual tests
for ordinary systems or are “pathological” cases needed to
show an effect?

To answer this question we will look at three examples.
These examples are used throughout the paper, and are there-
fore described in more detail than necessary at this point
where only C' and o are needed. The output error structure
(23) is chosen for the examples. This corresponds to the AR-
MAX structure (24) i.e. C(q) = A(g). In (22) NID(0, 0?) is
short for normal and independent distributed with mean 0
and variance o2.

e(t) € NID(0,0?) , 0 = 0.1 (22)
= %u e

y(t) = A0 (t) +e(t) = (23)

A(q)y(t) = B(q)u(t) + A(g)e(t) (24)

The input is a PRBS signal switching between +1. Notice
however that the mean time step is five samples [4, Example
5.11]. The N/S ratio is approximately 10%. The first exam-
ple is the discrete counterpart to a continuous time first order
system with bandwidth 21—0HZ. The second example is the dis-
crete counterpart to a continuous time systems consisting of
the series of a second order system with bandwidth %Hz and
damping factor 0.5 and a first order system with bandwidth
%Hz. The sampling time is 1, thus the sampling frequency is
around 20 times the bandwidth. This is not at all an unusual
system. The third example is similar to the second except
for the damping factor which is 0.1 in order to illustrate the
situation with zeros closer to the unit circle. Fig. 1 shows
gain and poles for the examples, notice that the poles equals
the zeros for C(q).

10 0.5
1 ] :
0.1 0 +
0.01 :
0.001 -0.5
0.01 0.1 1 314 -1 0 1
10 0.5 :
1 : 4
0.1 0 . +
0.01 +
0.001 -0.5
0.01 0.1 1 314 -1 0 1
10 0.5 :

1 | p
0.1 0 : +
0.01 7/

0.001 -0.5 -
0.01 0.1 1 314 -1 0 1

Figure 1: Gain and poles for the examples.

The variance and the autocovariance for the prediction er-
rors are calculated by (20)—(3) and shown in Fig. 24 for the
examples. It is evident that the transients becomes larger and
longer as the zeros for C(q) approaches the unit circle. An
important indicator of this is the maximum overshoot for the
prediction error variance which are roughly 1.8, 100 and 260
for the first, second and third example respectively.



Input and output sequence
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Figure 2: Prediction error properties for the first order exam-
ple (DS method).

The autocorrelation test is based on an estimated autocor-
relation function. As an example let us calculate the expec-
tation of the estimated lag one autocorrelation for the predic-
tion error.

b= Cov[e(j +1),¢e(7)]

VIe(r)]
Covle(r + 1),e()] = - 3 et + 1)e(t)
t=1
PIe] = 3 elt)”
t=1

The expectations for these estimates are:

BT} = - > VIelh)]

Input and output sequence
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10 prediction error sequences
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Figure 3: Prediction error properties for the third order sys-
tem with damping factor 0.5 (DS method).

E{Cov]e(r + 1), ¢(r)]} = % S Covle(t + 1), €(t)]
t=1

E{(T(;I[e(j' +1),e(n)]}
E{V[e(1)]}

The resulting expectations are shown in table 1. Rows 1 and
3 are based on the values shown in Fig. 2-3. The deviations
from the stationary values are seen to be small for the first
order system, but large for the third order system even when
using 500 samples. It is important to notice that the expected
correlation estimate does not depend on the noise variance,
but only on C(q).

The important conclusion to this section is the following.
Assume we use the DS and the system parameters for the
prediction. Then the variance and the lag one autocovariance
for the prediction error has a transient which is significant for
an ordinary third order system. The standard autocorrelation
test is invalid in this situation, and the S/N ratio has no

E{p1} ~



Input and output sequence
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Figure 4: Prediction error properties for the third order sys-
tem with damping factor 0.1 (DS method).

impact on the validity of the test. If the zeros for C(q) get
closer to the unit circle and/or the order of C(g) increases
then the transient will also increase. Even a first order system
gives problems if the zero is sufficiently close to the unit circle.

5 Solutions

Before turning to specific solutions the problem is reviewed
and to main approaches are discussed.

Given an ARMAX structure A(q), B(q), C(q) with C(q) ze-
ros inside the unit circle, a parameter vector § and some mea-
surements

2= [y up]
yi = [y(1)
up = [u(1)

Order Damp. # samp. E{V} E{Cov} E{p1}

1 0.5 49 0.01023 0.00017 0.01666

1 0.5 499 0.01002 0.00002 0.00167

3 0.5 47 0.15474 0.14064 0.90889

3 0.5 497 0.02369 0.01330 0.56147

3 0.1 497 0.06594 0.05357 0.81253
Stationary values 0.01 0 0

Table 1: Expected values for estimates of the statistical prop-
erties for the prediction error when using the DS method.

The problem is to obtain the corresponding noise sequence
e(t) to test it for white noise properties. Further assumptions
are avoided to obtain a general solution.

The classical prediction error approach is based on the fact
that one step prediction error equals e(t) in the stationary
case i.e.

et) =yt)— gt —1) = e(t) as t— o0

The notation §(t|t — 1) emphasizes that §(t) is based on past
measurements z\~'. Consequently €(t) is based on 2! i.e. the
measurements from the beginning to the present which are
very few in the beginning.

In view of the problems with the transient it would be bet-
ter to estimate e(t) using all data i.e. like E(e(t)|2]") because
this is the best estimator in the MSE sense.

However, some prediction error based methods are dis-
cussed first.

5.1 Discarding the first part of the samples

Simply discard the transient phase from the prediction error
sequence. Even through this principle is extremely simple it
still require some of the calculations in section 3 to decide on
the number of samples to discard. Anyway, this solution is
far better than ignoring the problem. It can be recommended
in cases with plenty of samples, but it is unsatisfactory with
few samples.

5.2 Using a Kalman filter

The ARMAX model (1) can be represented in e.g. companion
state space form as follows.

z(t+ 1) = dx(t) + Tu(t) + He(?) (25)
y(t) = Hz(t) + e(t) (26)
—a; 1 0 --- 0 ;
—as 01 --- 0 1
e N @
a4, 00 - 0 bn



c1 — ay
II= ,H=[1 0 --- 0] (28)
Cp — Qp
R; = Cov(Tle(t)) = o2Im” (29)
Ry =V(e(t)) =02, Ryp = oIl (30)
p2(0) = E(z(0)) , P»(0) = Cov(z(0)) (31)

Based on (25)-(31) a Kalman filter [5, sec. 11.3] can pro-
vide the optimal prediction §(t) for y(¢) and the time varying
prediction error variance (32). The classical residual test re-
quires a stationary error sequence which can be obtained by
normalizing with the prediction error standard deviation as
in (33).

P,(t) = HP,(t)H' + ¢* (32)
_9@®) —y()
e(t) = 0 (33)

At this point a serious problem arises which makes it im-
possible to use the Kalman filter above in the ARMAX case.
To obtain the optimal predictions from the beginning it is
necessary to use the exact initial conditions (31) which are
impossible to obtain because p,(0) depends on the past input
which in general is unknown. A number of ad hoc solutions
to this problem can be found.

e Use a crude estimate of u,(0) and a correspondingly large
estimate of Py (0).

e Assuming u(t) to be a stochastic process with know prop-
erties enables the calculation of stationary values for u,
and P, which can be used as initial conditions under the
assumption that the system is stationary prior to the
measurements, see e.g. [6].

e An alternative to the above approach would be to base
the Kalman filter on the state space model for the
MA(n.) auxiliary process w(t) (44) discussed in the next
section. This would also avoid the dependence on deter-
ministic past.

e The initial conditions u,(0) can be estimated as the one
minimizing the sum of squared prediction errors pro-
duced by the Kalman filter using a constant Kalman gain
i.e. assuming stationarity. This is similar to the approach
suggested for parameter estimation in [4, sect. 12.6].

To summarize on the Kalman filter approaches, they all suf-
fer from one or more disadvantages as: complex calculations,
unrealistic assumption and lack of theoretical foundation.

The fundamental drawback for the prediction error ap-
proach, including Kalman filtering, still is that €(¢) only is
based on 2! i.e. part off the know data 27.

5.3 Conditional expectation using all data

When all data are used to estimate the noise the term predic-
tion error is not appropriate, therefore the more general term
residual are used.

The relation between e(t) and the measurements is given
by (34)—(35).

A(@)y(t) — B(qu(t) = C(gle(t) &
w(t) = C(ge(t) , w(t) = A(g)y(t) — B(q)u(t)
In this contents the measurements can therefor be represented

by the auxiliary sequence (36) which can be calculated exactly
from 2.

wy = [w(ts)

w(n)]

The problem now is to find the conditional expectation (37)
where the operator “is introduced for conveniences.

(36)

é(t) = E(e(t) |wf, ) (37)
The solution is given below where the notation {M},; refers
to the element in row ¢ column j in matrix M.

Theorem 1. Assume that the stochastic part of the ARMAX
process is stationary and e(t) € NID(0,0?), the conditional
expectation for e is then given by

& . = RewRy'w} (38)
where
(Row); = o*cpotj—i for 0<i—j<nm,
I A 0| otherwise
(Ru}., = %1y (i — ) for |i—j| < me
R A otherwise
ne—|k|

'I"w(k) :0'2 Z Cici+|k|
i=o0

and
5 T
‘E(egs—nC - e;ls—nc) = [O . 0]
Cov(e} _, — & _. ) =0 — Re,R,'RE,
CO’U(éZ_nc) = RewR;IRZw
Remark 1.1. No assumption on the zeros for C(g) is needed,

they may be on or even outside the unit circle.

Remark 1.2. If e(t) is not normal distributed, €} _,, (38) may
not be the conditional expectation. Consequently, it may not
be the best estimate in the mean square sense but it is the
best linear estimate.



Proof. The dimension of the variables used are listed below.

Variable dimension

€r —n, n—ts+n.+1x1

wy, n—ts;+1x1

R, n—ts+ne+1lxn—ts+n.+1
R,y n—ts+n.+1lxn—ty;+1

R, n—ts+1lxn—t,+1

The vector (39) has a normal distribution with mean (40) and
covariance (41).

-]

E(v) = [0 00 ... 0 (40)

Cov(v) = [é%fw %;”] (41)

R. = Cov(e} _, ) =0o’I

Rey = Cov(ef _,_,wy)

= B¢} _p,wp")

{Rew};; = Ee(ts —ne +i—Dw(ts +j — 1))
=E(w(t)e(t —n. +i— 7)) (42)
= 0%Cnotjmi

Ry = Cov(wy)

=Ew}w} ")
{Ruw}i; =E(w(ts +i—Dw(ts +j—1))
= E(w(i)w(j)) (43)
=ry(i =)

ne—|k|
rulk) = B(tu(t + ) =0 Y ciciry

The stationarity is used in (42) and (43).
According to the well known theorem proven in e.g. [7, sec.
7.3], the conditional expectation is given by

= E(ef, _p. [wi,)
=E(ef, 5,) + RewRy' (wf — E(wy.))

_ —1,.n
= Rew R, wy

<M
ets—nc

and the estimation error has zero mean and covariance
Cov(el _, —&'_,)=R.— RewR,'Rew,”
Finally, the covariance for the residuals is
Cov(&} _,,.) = Cov(Rew Ry w})
= RewRy'Cov(w} )Ry ' Rew”
= RewRy'RuRy'Rew”
= RewRy ' Rey”
which completes the proof. O

The method above gives the best estimate of e(t). How-
ever, it requires a huge amount of computation, especially
the inversion of R,, is a problem.

5.4 The backforecasting method

The so called backforecasting (BC) method presented below
is an computationally more suitable alternative to the method
in theorem 1 because it only uses filtering.

The BC method has been used on ARMA models by Box
and Jenkins [8]. Unfortunately this particular method can
only be directly applied to ARMAX models if the input u(t) is
known back in time, which is not usually the case. Therefore
a method for ARMAX models based on the same principles
is presented below.

Theorem 2. Assume that C(q) in an ARMAX system has
all zeros inside the unit circle and that e(t) € ID(0,0?) then
é(t) calculated by algorithm 1 is an approximation for é(t) =
E(e(t)|wf) with the property

é(t) > é(t) as m— oo VtE [ts —ne,n)

Algorithm 1 (Backforecasting).

1. Calculate w(t) for t = t5,ts + 1,... ,n.

2. Calculate &(t) backwards for t = n,n—1,... ,ts, initial-
ize with éy(n + 1),...,é(n +n.) =(0,...,0).
é(t) =w(t) —cr&p(t+1) — -+ —cn Ep(t +ne)

3. Multi step backforecasting of w(t) for t = t5 — 1,5 —
2,...,ts —me, using &(t) =0 Vi < ts — 1.

ﬁ)(t) = éb(t) +-t Cncéb(t + nc)

4. Calculate é(t) for t = ts—ne,ts—ne+1,... ,ts—1, using
E(t) =0 Vt <ty —n.— L.

B(t) = W(t) — crd(t — 1) — -+ — cn.8(t — 1)

5. Calculate the remaining part of &(t) i.e. for t = t4,ts +
1,...,n either by

(a) the filter in step 4 with w(t) = w(t) Vit > ts
or

(b) use (&(ts —1),...,&(ts — n.)) for the missing initial
conditions (e(ts —1),...€(ts —nc)) in the usual pre-
diction error formulas (6)—(7), then e(¢) will equal

&(1).



Remark 2.1. Notice that only filtering is used in the algo-
rithm.

Remark 2.2. Using the filter in step 4 for all data makes step
five unnecessary. The motivation for step 5 is to show that
the algorithm can be separated in step 1-4 which calculates
the initial conditions for the first prediction §(¢;) and step
5(b) which based on these initial conditions calculates the
residuals in the usual prediction error way.

Proof. The key points in this proof are that the sequence
w(t) with the forward model (44) is a MA(n.) process which
equally well can be modeled by the backward model (45). The
backward model is developed further to show the notation
used. Notice also that e and ep are different sequences.

w(t) = C(g)e(t) , e(t) € ID(0,0?) (44)
w(t) = Clg " es(t) , es(t) € ID(0,0°) &
w(t) = (14+c1g+ -+ cn.q")es(t)

=ep(t) +crep(t+1) +---+cn.ep(t + ne)

(45)

Taking conditional expectation on both sides of (44)
yields (46). Notice that ~ denotes conditional expectation
with respect to w;’ in general.

w(t) = C(q)e(t) &
&(t) = w(t) — cré(t — 1) — -+ — cn. &t — ny)

(46)
(47)

It follows from (44), i.e. w(t) being an MA(n.) process, that
e(t — k), w(t) are independent for ¥ > n. + 1 and that w(t +
k), w(t) are independent for |k| > n. + 1 which implies (48)
and (49) respectively.

é(t) = E(e(t)|wi') =E(e(t)) =0 Vt<t, —n.—1 (48)
w(t) = E(w(t)|wi) = E(w(t)) =0 Vit <ty —n.—1
(49)
It follows from (35) that w(t) is known for ¢ € [ts,n] i.e.
(1) = B(w(®wp) = w(t) ¥ € [t,,n] (50)

To calculate &(t) for t = t; — ne,...,n by the filter (47) only
w(t) for t € [ts — ne,ts — 1] are missing because the rest of
w(t) is given by (50) and the initial conditions is given by
(48).

The values w(t) for t € [ts — n,ts — 1] can be found by
using the backward model (45) for backforecasting. Tak-
ing conditional expectation on both sides of (45) yields (51).
Thus é,(t) can be calculated by (52) backwards i.e. for ¢t =

nn—1,...,ts.
w(t) = Clg~en(t) & (51)
ép(t) =w(t) —cré&p(t+1) — -+ —cp Ep(t +ne) (52)

Starting this filter for ¢ = n requires the initial conditions
(ép(n +1),...,&(n + n.)) which are unknown. If these are
set to zero a slightly different sequence (53) is obtained which
is called é;(¢). The notation ~ are also used for other sequences
which are affected by this approximation.

ép(t) =w(t) —aép(t+1) — - —cn &t +ne) (53)
, Ep(n+1),...,&Mn+n))=(0,...,0) (54)
However, only the n, first values €(ts),---,€p(ts + ne — 1)

are needed in the following and because all zeros for C(gq) are
assumed inside the unit circle the effect of initial conditions
will vanish if the number of samples is much larger than the
length of the impulse response for % ie.

(ep(ts),---,Ep(ts + e — 1))

= (€p(ts),...,Ep(ts +ne—1)) as n—o00 (55)

Assume for a moment that é;(¢) can be calculated. Because
ep(t) € ID(0,02) it follows that

é(t) = Elep(t)|wy] = Elep(t)] =0 Vi <5 — 1

Now w(t) for t =ts—1,...,ts — n. can be calculated (back-
forecasted) by (51). This first part of w(t) together with the
last part (50) and the initial conditions (48) are sufficient to
calculate é(t) by (47) for t = t5 — n.,...n as was needed.
When the approximation é(t) is used corresponding ap-
proximations w(t) é(t) are obtained, however (55) implies that

w(t) > w(t) as n— oo VtE [ty —ne,ts — 1] =
é(t) > é(t) as n — oo Vi€ [ts —ne,n]
which completes the proof. O

Theorem 2 above makes it possible to relax the distribution
assumption in theorem 1 as follows.

Theorem 3. The results in theorem 1 holds asymptotically
for n — oo for any distribution of e(t)

Proof. é(t) is calculated by filtering only, therefore it will be
a linear function of data. Then theorem 2 implies that the
conditional expectation é(t), which is the optimal estimate in
the MSE sense, tends to a linear function, now € _,, is the
optimal linear estimate, in the MSE sense, for any distribution
of e(t) therefore it also is the conditional expectation in the
limit. O

From an application point of view this section can be sum-
marized as follows. If the impulse response for ﬁ can be
assumed to be shorter than the data sequence the compu-
tationally efficient BC algorithm should be used to calculate
the residuals. If this is not the case e.g. if the zeros for C(q)
is on the unit circle the BC method will not work but then
the method in theorem 1 can be used. Finally, if the impulse
response for ﬁ is known to be negligible the DS can be
used.



6 Consequences for residual tests -
BC start

To compare the BC method with the DS method the results
from the tree examples described in section 4 are shown below.

The number of samples are chosen sufficiently large to apply
the BC method. This method i.e. algorithm 1 is used to
calculated the residuals in the second subplots in figure 57,
clearly no transient are visible here. With the DS method the
prediction errors could be calculated only from time ¢, and
forward but the BC method can also give the n, values before
ts these are however not shown in the figures.

The statistical properties for the residuals is given (approx-
imately) by theorem 1 and shown in the last two subplots
where t, is indicated by the first tick-mark and vertical dotted
line. Clearly there are transients in the statistical properties
but they are very small compared to the corresponding ones
from the DS method. Larger deviations from the stationary
values can only be observed for the first n, samples which is
the reason to exclude them from the calculated sequences.

Based on the above results the expected values for the im-
portant estimates can be calculated and are show in table 2.
It can be concluded that the BC method succeeds to produce
estimates with expected values with a negligible deviation
from the theoretical ones. Comparing with table 1 it is seen
that this is not at all the cases using the DS method.

Order Damp. +# samp. E{V} E{Cov} E{p.}
1 0.5 49 0.00989 -0.00008 -0.00804
1 0.5 499 0.00999 -0.00001 -0.00078
3 0.5 47 0.00962 -0.00035 -0.03588
3 0.5 497 0.00996 -0.00003 -0.00328
3 0.1 497 0.00996 -0.00004 -0.00387
Stationary values 0.01 0 0

Table 2: Expected values for estimates of the statistical prop-
erties for the residual when using the BC method. ¢, is
marked whit an extra tick-mark.

7 Application to residual test

In this section the third order system with damping factor 0.5
is used to compare the BC procedure with the DS when the
prediction errors are applied in residual tests. The number
of observations used is 500. It is necessary to know the right
parameters and to be able to control the assumptions. For
these reasons the comparison is based on simulation. The
software used is MATLAB.

As a reference the RESID procedure from the System Iden-
tification Toolbox [9] is chosen. The reasons are that this
procedure uses some kind of DS and it is written by Lennart
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Figure 5: Residual properties for the first order example (BC
method).

Ljung, which gives us every reason to believe that it works
well.

According to the analysis the first three white noise samples
will specify the transient. A particular 500 sample sequence
may or may not show a transient. Of course I have chosen a
sequence which gives a transient. Actually the default initial
values for the random generators in MATLAB are used.

The middle and bottom sequences in Fig. 8 are based on
the correct system parameters and calculated by RESID and
the BC algorithm respectively. Clearly only the former gives
a transient. The topmost sequence is also calculated by RESID
but now with parameters estimated by ARMAX, an param-
eter estimation procedure from the toolbox. In this case the
transient has been reduced. The reason for this is that the
ARMAX procedure searches for a minimum of the usual LS
criterion which increases dramatically for parameters given a
transient as e.g. the system parameters. The resulting esti-
mate will then be biased because it is a compromise between
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Figure 6: Residual properties for the third order system with
damping factor 0.5 (BC method).

minimizing the transient and the stationary part of the se-
quence [1].

To test if the model is large enough, the RESID procedure
graphs the auto- and crosscorrelation estimates with their
99% confidence limits. Figure 9 shows the three autocorre-
lation tests which correspond to the three sequences in Fig.
8. For the reasons explained the estimated parameters pass
the test using the RESID procedure. Using the RESID pro-
cedure one would not accept the system parameters because
the autocorrelations exceed the confidence limits for lag 1-7.
Finally the BC based procedure gives no reason to reject the
system parameters.

8 Conclusion

This paper concerns model testing for ARMAX models. The
focus is on problems that occur when the MA part has zeros
close to the unit circle.

10
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Figure 7: Residual properties for the third order system with
damping factor 0.1 (BC method).

It is shown that the prediction errors resulting from the
optimal one step predictor, initialized in the ordinary way,
gives large transients even for a quite ordinary third order
system. Thus the stationary properties on which the tests
are based are not true for all samples.

By analysis it is shown that this results in severe problems
for the standard autocorrelation test when the order of the
MA part is larger than around two depending on how close
the zeros are to the unit circle, even a first order system can
give problems. The prediction error transients will also cause
problems for other tests as e.g. tests for too many parameters.

One solution to the problem is to use the measurements
to estimate the missing initial condition, which will nearly
remove the transient. In this paper a method based upon the
principle of backforecasting is developed.

Analysis shows that this method is superior to the ordi-
nary method. By simulation this method is compared to the
RESID procedure from the system identification toolbox for
MATLAB. For the simulation experiment an ordinary third
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Figure 8: Prediction error/residual sequences from the same
input / output sequence.
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Figure 9: Residual tests
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order system is used. Using the RESID procedure one could
not accept the system parameters, but using the procedure
developed here there was no reason to reject them.

The conclusion is therefore that when working with AR-
MAX models, especially with MA order larger than 2, one
should be careful when using standard test procedures be-
cause they can be misleading. It is better to use the proce-
dure developed in this paper. Alternatively if there are plenty
of samples it is also possible to simply discard the transient
phase from the prediction error sequence.
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