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QUATERNION FEEDBACK CONTROL FOR

RIGID-BODY SPACECRAFT

Hans-Christian B. Jensen �;1 Rafa l Wi�sniewski �;2;3

�Department of Control Engineering, Institute of Electronic

Systems, Aalborg University, 9220 Aalborg �, Denmark

Abstract: This paper addresses three-axis attitude control for a Danish spacecraft,

R�mer. The algorithm proposed is based on an approximation of the exact feed-

back linearisation for quaternionic attitude representation. The proposed attitude

controller is tested in a simulation study. The environmental disturbances correspond

to those expected for the R�mer mission. The pros and cons of the algorithm are

discussed. The results of the study show that the controller is a successful candidate

for on-board implementation.
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Acronyms

fPg Spacecraft principal axis coordinate

frame.

fIg Earth centred celestial coordinate

frame.
xv A vector in a certain coordinate

system fXg, where fXg is fPg or fIg.

a1 Constant:
I2;p�I3;p

I1;p

a2 Constant:
I3;p�I1;p

I2;p

a3 Constant:
I1;p�I2;p

I3;p
p
iA Transformation matrix from fIg to fPg.
Lfh Lie derivative of a function h along

vector �eld f .

Ip Inertia tensor for the satellite about the

principal axes.
xL Total angular momentum in fXg.
pN controlControl torque in fPg.
pNdist Disturbance torque in fPg.
pN ext External torque in fPg.
p!p;i Angular velocity of fPg in relation

to fIg observed in fPg.

1 E-mail: hcbj@control.auc.dk
2 E-mail: raf@control.auc.dk
3 The support for this work is by the Danish Research

Agency under contract 9902486 \Advancenced Control

Concepts for Precision Pointing at Small Spacecraft".

p
i q Attitude quaternion representing

the transformation from fIg to fPg.
p
i q Vector part of the quaternion

p
i q.

Q(
p
i q) Orthogonal matrix used for kinematics.

u Input vector.

U Feedback linearising input vector.

x State vector.

1. INTRODUCTION

Over the last three decades nonlinear controllers

have proved to be of increasing interest. This is

due to the fact that most systems are inherently

nonlinear, and nonlinear controllers might be de-

signed to guarantee global stability, improved eÆ-

ciency and increased control performance for such

systems. This is especially interesting for space-

crafts, since they are nonlinear and eÆciency is

an important factor as the energy used on board

the satellite is self-obtained.

The attitude controller presented in this paper

was proposed as an attitude controller for the

next Danish satellite, R�mer. The purpose of the

R�mer mission is to measure oscillations of 25

nearby stars and is planned to be launched in



2002. The objectives of the attitude controller is

to make attitude corrections and perform slew

manoeuvre.

This paper uses quaternion feedback linearisation

for control synthesis. Feedback linearisation is a

well-known type of nonlinear control, that is par-

ticularly well-suited for implementation on simple

and well-de�ned systems, with precisely known

constants.

The unit quaternion has been successfully used

in several spacecraft for attitude representation,

due to its advantages over other attitude repre-

sentations such as the Gibbs vector, rotation ma-

trices etc. The unit quaternion provides a simple

equation for kinematics where the composition of

successive rotations corresponds to the product of

corresponding quaternions.

Nonlinear attitude control has been based on pas-

sivity, sliding mode and feedback linearisation.

Previously the exact feedback linearisation was

conducted locally, when the attitude was parame-

terised by Euler angles (Byrnes and Isidori, 1991),

or globally when feedback linearisation was ap-

plied only to the spacecraft dynamics (Wen and

Kreutz-Delgado, 1991).

This paper will present the problem of feed-

back linearising the attitude dynamics including

quaternion kinematics. The limitations of the pre-

sented attitude controller for three orthogonally

placed thrusters will be discussed. The paper

shows whether the controller presented in this

paper is a successful candidate for on-board im-

plementation.

The rest of the paper is organised as follows: Sec-

tion 2 reviews the mathematical models of rigid-

body dynamics and kinematics, which uses the

quaternion for attitude representation. Section 3

contains the basic principle of feedback linearisa-

tion, that were used for designing the nonlinear

controller in section 4. Section 5 presents the

results on functionality and stability tests. The

concluding remarks comprises section 6.

2. MATHEMATICAL MODELS

The model of a satellite can be divided into a

model of the rigid-body dynamics (the Euler equa-

tions), and a model of the attitude kinematics.

The kinematics are here represented using the unit

quaternion.

2.1 Model of the Rigid-body Dynamics

The model of a rigid body is as follows (J.R. Wertz,

1997):

d

dt

pL =� p!p;i �
pL+ pN ext (1)

The term pNext represents the external torques

applied to the satellite along its principal axes.

The input signals to the rigid body is angular

momentum about the principal axes, and the term
pN ext is therefore:

pNext =
pNdist +

pNcontrol (2)

The term pNdist represents the disturbance torques

applied to the satellite. The attitude controller

presented in this paper was designed without tak-

ing the disturbance torques into account, however

they were incorporated in the simulation facility

used in section 5.

When p!p;i is isolated on the left side of equa-

tion 1, the following equation for the rigid-body

dynamics, is derived:

d

dt

2
4
p
!1;p;i

p
!2;p;i

p
!3;p;i

3
5 =

2
666664

a1
p
!2;p;i

p
!3;p;i +

pN1;control

I1;p

a2
p
!1;p;i

p
!3;p;i +

pN2;control

I2;p

a3
p
!1;p;i

p
!2;p;i +

pN3;control

I3;p

3
777775
(3)

2.2 The Unit Quaternion

The unit quaternion gives a minimal global repre-

sentation of the attitude using only four parame-

ters, and geometrically it corresponds to a point

on a 3-sphere (S3) in R4 .

A quaternion is de�ned as:

q �

2
664
q1

q2

q3

q4

3
775 �

�
q

q4

�
(4)

where q4 is the scalar part of the quaternion and

q is the vector part. The vector part is described

by the components iq1 + jq2 + kq3 in which i; j

and k are hyper-imaginary numbers.

2.3 Model of the Kinematics Using the Unit

Quaternion

The kinematics are de�ned by using the quater-

nion to represent the attitude of the inertial co-

ordinate frame in the principal coordinate frame

(H.S. Morton, 1993):

d

dt

2
664
p
i q1
p
i q2
p
i q3
p
i q4

3
775 =

1

2

2
664

p
i q4 �p

i q3
p
i q2

p
i q1

p
i q3

p
i q4 �p

i q1
p
i q2

�p
i q2

p
i q1

p
i q4

p
i q3

�p
i q1 �

p
i q2 �

p
i q3

p
i q4

3
775

| {z }
Q(

p

i
q)

2
664
p!1;p;i
p!2;p;i
p!3;p;i

0

3
775

(5)
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+

- T

Linearisation Loop

Pole-Placement Loop

x

z

v=-K z u=u(  ,v)
zr x

z

=  (  ,u)f  x y=  (  )h x

=   (y)

Fig. 2. Input-output feedback linearisation.

The orthogonal matrix Q(
p
i q) has the following

property: Q(
p
i q)

�1 =
Q(

p

i
q)T

p

i
q2
1
+

p

i
q2
2
+

p

i
q2
3
+

p

i
q2
4

= Q(
p
i q)

T

since
p
i q

2
1 +

p
i q

2
2 +

p
i q

2
3 +

p
i q

2
4 = 1.

3. THE BASIC PRINCIPLE OF FEEDBACK

LINEARISATION

The basic principle of exact linearisation is to

make the nonlinear system act as a linear sys-

tem and then design a simple tracking controller

that stabilises the system. In other words exact

linearisation is used to change the appearance

or behaviour of a nonlinear system into a linear

one, which is controllable, and then to design a

stabilising controller, that tracks references. There

exists three methods of deriving exact feedback

linearisation (Marino and Tomei, 1995a):

(1) State linearisation is a nonlinear change of

coordinates by a di�eomorphic mapping (dif-

feomorphism).

(2) Input-state feedback linearisation (Sometimes

called state feedback linearisation or just

feedback linearisation). It consists of �nding

a nonlinear feedback and a di�eomorphism.

It is a generalisation of the pole placement

theorem for linear systems.

(3) Input-output feedback linearisation and con-

sists of a selection of the outputs, that will

make the system input-output feedback lin-

earisable, a nonlinear feedback, and a di�eo-

morphism. It is a generalisation of the zero-

pole cancellation technique.

The last two methods use feedback loops, which

is done as in �gures 1 and 2.

Nonlinear systems can be divided into those which

are input-state linearisable, input-output linearis-

able, and those which are not feedback linearis-

able.

4. FEEDBACK LINEARISATION OF

ATTITUDE DYNAMICS

Before feedback linearisation can be done, the

complete system has to be de�ned. Using the

models derived previously (Equations 3 and 5),

the system takes the following form:

d

dt

2
666666664

p
!1;p;i

p
!2;p;i

p
!3;p;i
p
i q1
p
i q2
p
i q3
p
i q4

3
777777775

| {z }
_x

=

2
666666664

a1
p
!2;p;i

p
!3;p;i

a2
p
!1;p;i

p
!3;p;i

a3
p
!1;p;i

p
!2;p;i

1

2
Q(

p
i q)

2
664
p
!1;p;i

p
!2;p;i

p
!3;p;i

0

3
775

3
777777775

| {z }
f(x)

+

2
66666666666664

1

I1;p
0 0

0
1

I2;p
0

0 0
1

I3;p

0 0 0

0 0 0

0 0 0

0 0 0

3
77777777777775

| {z }
g

2
4
p
N1;control

p
N2;control

p
N3;control

3
5

| {z }
u

(6)

4.1 Feedback Linearising loop

The control characteristic indices are derived us-

ing the Lie derivates for multi-variable systems:

LgjL
k
f
hi(x) = 0 ; 0 � k � �i � 2;8x 2 U0

LgjL
�i�1
f

hi(x) 6= 0 ; some j;8x 2 U0 (7)

where i is the number of outputs, j the number

of inputs (1 � j � m) and �i are the control

characteristic indices (For single-variable systems

these are known as the relative degree). The con-

trol characteristic indices for the system presented

in equation 6 is f�1; �2; �3; �4g = f2; 2; 2; 2g.

The 24 lie derivates (The number of lie derivates

comes from the four outputs, three inputs and

control characteristic indices. 4� 3� 2 = 24) for

the model of the rigid-body were calculated, and

they satisfy equations 7.

The new system with the control characteristic

indices f2; 2; 2; 2g is based upon the lie derivatives
L2
f
h and LgLfh, which must therefore be calcu-

lated:

L
2
f
h =

Q(
p
i q)

2

2
6664

a1
p
!2;p;i

p
!3;p;i

a2
p
!1;p;i

p
!3;p;i

a3
p
!1;p;i

p
!2;p;i

�
1

2

�
p
!1;p;i

2
+ p

!2;p;i
2
+ p

!3;p;i
2
�

3
7775



LgLfh =
Q(

p
i q)

2

2
66666664

1

I1;p
0 0

0
1

I2;p
0

0 0
1

I3;p

0 0 0

3
77777775

(8)

The system, which is to be feedback linearised,

has the following structure:

d2

dt2

2
664
p
i q1
p
i q2
p
i q3
p
i q4

3
775 = L

2
f
h+ LgLfhu

=
1

2
(2L2

f
h)| {z }

f
2
(x)

+
1

2
(2LgLfhu)| {z }

U(x;u)

=
1

2
f2(x) +

1

2
U (x;u) (9)

Using feedback linearisation theory, the new input

vector U is then calculated, so that it exactly

feedback linearises the system (equation 9):

U (x;u) = �f2(x) + 2vt (10)

Combining the feedback linearisation loop (de-

rived in equation 10) with the equation for the

satellite model (equation 9), results in the follow-

ing linear system:

d2

dt2

2
664
p
i q1
p
i q2
p
i q3
p
i q4

3
775 =

1

2
f2(x) +

1

2
(�f2(x) + 2vt)

= vt (11)

The relationship between the real input vector u

and the feedback linearising vector U is:

U = U (x;u) = 2LgLfhu

= Q(
p
i q)

2
66666664

pN1;control

I1;p
pN2;control

I2;p
pN3;control

I3;p

0

3
77777775

| {z }
g
2
u

(12)

Isolating u in equation 12 gives the following

equation:2
664
p
N1;control

p
N2;control

p
N3;control

0

3
775

| {z }
u

=

2
664
I1;p 0 0 0

0 I2;p 0 0

0 0 I3;p 0

0 0 0 0

3
775QT(

p
i q) U

(13)

The problem of feedback linearising the satellite

model which incorporates the quaternion is that

the number of inputs to the kinematic equation

(from equation 5) is larger than the number of

outputs. That is to say the feedback linearising

input vector U has four components that may

change from zero, whereas the real input vector

u has three components, hence the system is

seemingly under-actuated.

The upper three components of the feedback lin-

earising input vector U are calculated according

to the formula 10, but in order for the fourth

component of the u vector (u4) in equation 13

to be zero,
p
i q has to be perpendicular to U . The

exibility is in U , which can be arbitrary assigned

in contrast to
p
i q, which is measured. In this paper

U4 is changed, but in practical applications, any of

the other components of the U vector might have

been chosen. The component U4 is calculated in

the following way U4 = �
p

i
q1 U1+

p

i
q2 U2+

p

i
q3 U3

p

i
q4

.

The projection gives the following extra term to

the input vector u:2
6666664

p
i q1

2
p
i q4

�
p
!1;p;i

2
+ p

!2;p;i
2
+ p

!3;p;i
2
�

p
i q2

2
p
i q4

�
p
!1;p;i

2
+ p

!2;p;i
2
+ p

!3;p;i
2
�

p
i q3

2
p
i q4

�
p
!1;p;i

2 + p
!2;p;i

2 + p
!3;p;i

2
�

3
7777775

| {z }
ve

(14)

which changes the ideal feedback linearised system

presented in equation 11, into the following:

d2

dt2

2
4
p
i q1
p
i q2
p
i q3

3
5 = vt � ve (15)

The extra term from the projection has the oppo-

site sign of the term inU which feedback linearises

the model of the satellite and keeps the accelera-

tion of the quaternion ( �
p
i q1,

�p
i q2 and

�p
i q3) constant.

The inclusion of the extra term contributes to

damping of the system.

The proposed feedback linearising loop results in

in exact feedback linearisation at the equilibrium

point
p
i q4 = 1. The attitude controller is unstable

at the set fpi q :
p
i q4 = 0g, which can be geo-

metrically interpreted as a circle in \S3". This

circle divides the S3 into two stable hemispheres

fpi q :
p
i q4 < 0g and fpi q :

p
i q4 > 0g.

4.2 Tracking Feedback

The result of the input-output feedback linearisa-

tion loop on the system, when
p
i q4 is disregarded,

is the following linear system in the neighbour-

hood of the equilibrium point:

�p
i q =

d2

dt2

2
4
p
i q1
p
i q2
p
i q3

3
5 = vt (16)

The scalar part of the attitude quaternion (
p
i q4)

is disregarded, since it is bounded and given



by
p
1� p

i q1 �
p
i q2 �

p
i q3. The system is therefore

stable if
p
i q is stable.

The following feedback form has to be chosen

to get asymptotic tracking (Marino and Tomei,

1995b):

vt =

2
4�k1

p
i q1 � k2

p
i _q1

�k1
p
i q2 � k2

p
i _q2

�k1
p
i q3 � k2

p
i _q3

3
5 (17)

The tracking loop (vt) is a simple multi-variable

proportional controller, which gives asymptotic

tracking on the linearised system.

5. SIMULATION TESTS OF THE

ALGORITHM

The attitude controller presented in this paper

is based on approximate feedback linearisation,

which combines feedback linearisation theory and

approximation of the feedback linearisation loop

using projection described in section 4.

To thorough test the proposed controller, the

performance and functionality of the feedback

linearisation loop is �rst tested, then the stability

of the attitude controller (both loops) is tested

near the unstable set fpi q :
p
i q4 = 0g.

The tests are done in a Matlab simulation, which

includes the realistic environmental disturbances

for the stability test.

5.1 Test of performance and functionality

The approximate feedback linearisation loop can

be tested in the following way. The rigid-body

is tumbling about all three axes at the start of

the simulation, and the tracking feedback loop

is disconnected (vt = 0). The approximate feed-

back linearisation loop keeps the derivative of

the quaternion ( _p
i q1,

_p
i q2,

_p
i q3) constant as long

as the quaternion is on either of the two stable

hemispheres, since the system is almost transfered

into the Brunovsky controller form when it is

combined together with the feedback linearisation

loop. The exact feedback linearising loop would

in theory keep the derivative of the quaternion

constant all the time. The test is illustrated in

�gure 3.

The �rst plot in �gure 3 shows the attitude

quaternion. The �rst three components of the

quaternion are moving on a straight line, except

from about 20 and 65 seconds into the simulation,

where
p
i q4 � 0 and the system is unstable. The

fourth component of the quaternion is moving so

that the quaternion ful�ls the unit property of the

quaternion.
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Fig. 3. Test of the feedback linearisation loop. The

tracking loop is disconnected (vt = 0), so

the quaternion (
p
i q1,

p
i q2 and

p
i q3) should be

linearised.

The second plot shows the di�erentiated quater-

nion which is constant for the three �rst compo-

nents of the quaternion, when the quaternion is

in one of the two stable hemispheres. The extra

term mentioned in equation 14 can be seen in the

second plot, as it results in lower angular velocities

than needed in order to keep the di�erentiated

quaternion constant. This is best seen near the

unstable point where the term is most signi�cant.

Hence the approximated feedback linearisation

proposed in this paper diverges very little from the

exact feedback linearisation inside the two stable

hemispheres.

The third plot shows the angular velocity of the

satellite model, that goes to in�nity if the output

from the approximate feedback linearisation loop

was not bounded in this test.

5.2 Test of stability

In order to test stability and performance of the

presented attitude controller design, both feed-

back loops are active and the reference is changed,

so that the satellite makes a slew-manoeuvre of

160 Æabout one of the axes. The starting point will

be the equilibrium point for the attitude controller

(
p
i q4 = 1), where the extra term from equation 14

is zero. The destination point, will on the other
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Fig. 4. Stability test of the attitude controller

under slew manoeuvre of 160 Æ(Which is 20
Æfrom making the system unstable).

hand be close to where the extra term has most

inuence. This is illustrated in �gure 4.

The �rst plot in �gure 4 shows the quater-

nion. The reference for the attitude controller is

changed 5 seconds after start, and the second

(
p
i q2) and fourth (

p
i q4) component of the quater-

nion changes value since the rotation is about the

second axis.

The second and third plot shows the expected

changes, which are a result of the reference track-

ing.

The result of the second test (stability test)

showed, that the system is stable far away from

the equilibrium point, even when the references

are near the boundary of the stable hemispheres.

6. CONCLUSION

A nonlinear spacecraft attitude controller was de-

rived using approximated feedback linearisation.

The goal of this controller was to feedback lin-

earise the attitude dynamics of a satellite model,

which uses the quaternion for attitude represen-

tation.

Exact feedback linearisation was not possible due

to the dependency between the four components

in the attitude quaternion. The standard feedback

linearisation techniques were extended through

projection to approximate the feedback linearisa-

tion loop. The drawback of using projection is the

loss of global stability at the circle
p
i q4 = 0 in

S3, due to the introduction of a division by
p
i q4.

However, the projection results in an extra term

which contributes to the damping of the system.

The derived attitude controller was shown to

be able to handle coarse pointing and slew-

manoeuvres, thereby proving to be a candidate

for on-board implementation.
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