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Abstract

This paper considers the use of neural networks for non-
linear state estimation, system identification and control.
As a case study we use data taken from a nonlinear injec-
tion valve for a superheater attemporator at a power plant.
One neural network is trained as a nonlinear simulation
model of the process, then another network is trained to
act as a combined state and parameter estimator for the
process. The observer network incorporates smoothing of
the parameter estimates in the form of regularization. A
pole placement controller is designed which takes advan-
tage of the sample-by-sample linearizations and state esti-
mates provided by the observer network. Simulation stud-
ies show that the nonlinear observer-based control loop per-
forms better than a similar control loop based on a linear
observer.

Keywords: Neural Networks, Nonlinear State Estimation and
Control, Power Plant Control, Extended Kalman Filters.

1 Introduction

In control applications it is not always the most feasible to
model the process in question using first principles. The pro-
cess can be difficult to model accurately, or there can be non-
linear elements in the process which can be difficult or costly to
quantify, and which may change from nominal values when the
process is running. Such issues as friction, stiction, saturation,
and general wear can produce unexpected effects. It is therefore
of interest to examine data-driven approaches to modelling and
control, and for nonlinear processes it is natural to choose non-
linear system identification methods.

Neural networks have been considered for control purposes
in several publications, notably: [5] where model reference
adaptive control is studied; in [7] an inverse, dead-beat con-
troller is considered; see also the references in [3]. More recent
studies include [6], in which the observability problem is ad-
dressed, and [8] on which the present paper to some extend
builds.A
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In this paper a neural network is trained as a nonlinear simu-
lation model of a valve used to control the temperature of steam
fed into a power plant superheater. After training this network
acts as a simulator for the control object. A neural network is
normally considered to be a non-parametric model, but we will
show how to estimate linearized parameters from the network
weights and neuron functions. We then train another neural net-
work model where we incorporate regularization to avoid too
rapid fluctuations in said parameter estimates. This network is
used as a state observer and parameter estimator at the same
time, thus in essence solving the extended Kalman filter prob-
lem. The chosen control law is recalculated at every sample
time with respect to the sample-by-sample parameter and state
estimates.

Remark 1 Using this approach is in fact equivalent to using
Gain Scheduling control, with an infinite resolution. At any
given operating point (which does not have to be an equilib-
rium) we extract a linearized state space model which is valid
in and immediately around that particular point. We then cal-
culate a control law based on this local linearized model. ]
1.1 The valve control loop

The application takes its starting point in an existing attempo-
rator control loop where a nonlinear hollow-cone valve acts as
an actuator for a cooler before a superheater. This particular
control loop is situated at the Danish power plant I/S Vestkraft
Unit 3.

The segment of the power plant’s steam circuit where the
control loop in question is found is shown in figure 1. The
cooler itself works by injecting cooling water into the steam
flow, thereby lowering the temperature of the steam. The cool-
ing water is fed to the cooler through the hollow-cone valve
which has a nonlinear profile with saturation and varying slope
(see figure 2).

One of the major difficulties in modeling the valve character-
istics is that it changes slowly over time, because the cooling
water that flows through the valve slowly clogs the small holes
in the cone with magnetite. In effect the valve gets a more and
more pronounced dead-zone nonlinearity, as indicated in the
figure. Thus it will be desirable to model and control the valve
loop based on measurements rather than first principles.

The outline of the rest of the paper is as follows. Section 2

1



^_^_^_^^_^_^_^^_^_^_^`_`_`_``_`_`_``_`_`_` a_a_a_a_a_a_a_a_aa_a_a_a_a_a_a_a_aa_a_a_a_a_a_a_a_ab_b_b_b_b_b_b_b_bb_b_b_b_b_b_b_b_bb_b_b_b_b_b_b_b_b c_c_c_c_c_c_c_c_c_c_cc_c_c_c_c_c_c_c_c_c_cc_c_c_c_c_c_c_c_c_c_cc_c_c_c_c_c_c_c_c_c_cc_c_c_c_c_c_c_c_c_c_cc_c_c_c_c_c_c_c_c_c_cc_c_c_c_c_c_c_c_c_c_cd_d_d_d_d_d_d_d_d_d_dd_d_d_d_d_d_d_d_d_d_dd_d_d_d_d_d_d_d_d_d_dd_d_d_d_d_d_d_d_d_d_dd_d_d_d_d_d_d_d_d_d_dd_d_d_d_d_d_d_d_d_d_dd_d_d_d_d_d_d_d_d_d_d e_e_ee_e_ee_e_ef_f_ff_f_ff_f_fCooler

M

Superheater

Valve

PI-control

Temperature
sensor

Additional control
signals

+

+

v
Ti

Steam Flow To Turbine

Figure 1: Sketch of the valve and cooler loop. The relevant
control variables are the valve setting v and the inlet steam tem-
perature Ti. The term ‘Additional control signals’, whenever
applicable, covers outside control influences such as reference
setpoints, feedback from the outlet steam temperature from af-
ter the superheater or additive feedforward [4].
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v

Q

Figure 2: Sketch of varying valve characteristics as a function
of the valve position v. As time passes the valve is gradually
clogged, decreasing the flow Q through the valve at a given v.
During plant stops the valve is cleaned, causing the character-
istic to return to the starting curve.

discusses the chosen network structure and training algorithm
as well as how to extract the parameter estimates. Section 3 ad-
dresses the control law, while section 4 shows some simulation
results. Finally we conclude with a few remarks in section 5.

2 Modeling

A discrete-time nonlinear system will in the present context be
one that can be written on the following general form:

xk g 1 h f i xk j uk j dk k (1)

yk h h i xk k (2)

in which k is the discrete sample number, x l�m n is a state
vector, u l.m m is the input vector and y l.m Rp is the output.
d l-m md is a vector of disturbances included to improve the
modeling capabilities. Whenever relevant, we will furthermore
include a vector θ lnm nθ containing some set of parameters suf-
ficient to describe the model at time k in the description. They
are generally assumed to vary much slower than the states x.

f and h are given functions which may be nonlinear, time-
varying and multi-variable. They are assumed to behave ‘rea-
sonably’, though; that is, they are supposed to be locally Lips-
chitz on the relevant compact subset of the state space.

We wish to identify a nonlinear (neural network) mapping M

x̂k g 1 h M i x̂k j uk j dk j εk k (3)

ŷk h Hx̂k (4)

εk h yk o ŷk (5)

based on samples of system in- and outputs p uk j yk q Nk r 0 (the
training set) such that the prediction error ε defined by equa-
tions (3)–(5) becomes small. M is chosen to be a multi-layer
perceptron (abbreviated MLP) and i ŝ k indicates estimates. We
choose the output mapping to be fixed, H hut I 0v , where I
and 0 are identity and zero matrices of appropriate dimensions.

2.1 The MLP

The MLP is composed of layers of parallel couplings of single
perceptrons. A perceptron is essentially a simple function φ :mxwym acting on a weighted sum of input signals

z h φ

z
n

∑
i r 1

θizi
in { θb |

The neuron function φ can be either linear or nonlinear; the
functions traditionally used in multi-layer perceptron neurons
are the unit gain, the hyperbolic tangent, the sigmoid and the
gauss functions. We will in this paper only use tanh iLs k and
linear neurons functions.

When several perceptrons are joined, the result is an MLP.
Parallel groupings of neurons are called layers, and layers of
perceptrons which do not produce an output from the network
as such are called hidden layers. It is chosen only to consider
MLPs with a single hidden layer since this is the simplest struc-
ture and it has been shown that provided there is a sufficient
number of neurons in the hidden layer the MLP can act as a
universal approximator [2].

A compact representation of the MLP can be achieved by col-
lecting the weights leading to each neuron as rows in a weight
matrix Θ, the biases in the vector θb, the in- and outputs to
and from the network in two vectors zin and zout and the neuron
functions in a single vector function φ. This produces the block
diagram shown in figure 3.

} Θ1
}N~ }������� } Θ2

}�zin zout

θb

φ

Figure 3: Matrix block diagram of an MLP.

The output from the multi-layer perceptron can thus be writ-
ten as:

zout h Θ2φ i Θ1zin { θb k (6)

Accordingly the network in- and output vectors are chosen as

zin h t x̂T
k uT

k dT
k εT

k v T and zout h t x̂k g 1 v
Because the state estimates are fed back and used as inputs

to the network, it is necessary to use recursive training of the
model. We wish to minimize the squared prediction error; con-
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sequently the following recursive performance functional will
be used:

Jk h k

∑
i r 1

λk � i 1
2

εT
k εk h λJk � 1 { 1

2
εT

k εk

where εk h yk o ŷk h yk o Hx̂k. The so-called forgetting factor
λ is chosen slightly less than 1, e.g. λ h 0 � 997. This factor
ensures that old, outdated information is ‘forgotten’ with time.

The Back Propagation Error Algorithm which is normally
used for training multi-layer perceptrons is a first-order gradient
method and thus it is not very efficient when the performance
surface does not change rapidly. For this reason it is often ad-
vantageous to use a second-order search method, such as the
Gauss-Newton algorithm. This approach to minimum search is
based on a second-order Taylor expansion of the performance
function at iteration i. At the minimum performance the Taylor
expansion is zero, and the parameter update can after rearrang-
ing terms be written as

θi g 1 h θi o�� d2J

dθidθT
i � � 1

dJ
dθi

where θ is a vector comprised of all the weights in the MLP
model. This is a well-known and quite effective minimization
rule. Like the Back Propagation Error Algorithm it can onlt
guarantee finding a local minimum of the performance surface
and a certain amount of trial-and-error must be expected when
using it. It works quite well in practice, however. In order
to update the parameters we need recursive expressions for the
model gradient ψ, the performance gradient GJ and the Hessian
matrix HJ . The algorithm is summarized in the box.

At sample k calculate:

1. State estimates: x̂k h M i θk j zin k
2. Prediction error: εk h yk o Hx̂k

3. Model gradient: ψk h dŷT
k

dθ h dM � θk � 1 � zin � T
dθ HT

4. Performance gradient: GJ � k h o ψkεk

5. Hessian: HJ � k h λHJ � k � 1 { ψkψT
k

6. Parameters: θk g 1 h θk { H � 1
J � k GJ � k

Next sample

2.2 Parameter estimation

The small-signal gains over the MLP can be found by differen-
tiating with respect to the inputs:

Mk h dzout

dzT
in
h dM i zin k

dzT
in

(7)

Assuming the MLP is sufficiently trained, it estimates the
state vector in the model

x̂k g 1 h Φ̂k i yk k x̂k { Γ̂k i yk k uk { Γ̂d
k i yk k dk{ K̂k i yk k εk (8)

ŷk h Hx̂k (9)

in effect solving the extended Kalman filter problem. We can

find the parameter matrices in that particular model structure
since differentiation of equation (8) with respect to the network
input yields:

dx̂k g 1

dzT
in
h t Φ̂k Γ̂k Γ̂d

k K̂k v h Mk g 1 (10)

Thus, the gain matrix may be interpreted directly as estimates
of the matrices in the sample-by-sample linearized state space
model. The gain matrix itself is calculated from the MLP
weights by using equation (6) in equation (7) and applying the
chain rule of differentiation:

Mk h d i Θ2φ i Θ1zin { θb kNk
dzT

inh Θ2
dφ i Θ1zin { θb k

d i Θ1zin k T d i Θ1zin k
dzT

inh Θ2φ ��i Θ1zin { θb k Θ1 (11)

where φ � is short for the derivative of the neuron function vector
with respect to its input vector.

2.3 Regularization

Ideally, the elements of the state and input matrices are smooth
functions of the sample number. However, if the elements of
Φ̂k and Γ̂k are fluctuating rapidly there is a greater risk of los-
ing reachability. Also, numerical problems in calculating the
feedback control law may arise. As a consequence it is desir-
able to introduce some means of smoothing the parameter esti-
mates while still allowing them to change in response to input
and states.

In estimation theory, regularization is a method for obtaining
models with good generalization abilities. Basically the idea is
to place a prior probability density function on the parameters
(weights) of the model, producing a regularized performance
function

J i θ k�h J i θ k { δ
1
2
i θ o ϑ k T i θ o ϑ k (12)

where δ is a scalar parameter that determines the degree of reg-
ularization. ϑ is a chosen, fixed parameter vector, typically 0.

After the differentiations of the performance functional it is
observed that during training we simply need slightly modified
versions of the gradients and Hessian matrices. The Gauss-
Newton learning method with regularization can be summa-
rized as in the following box. We will use this method to train
an observer network which is connected in parallel with the
plant network.

3



At sample k calculate:

1. State estimates: x̂k h M i θk j zin k
2. Prediction error: εk h yk o Hx̂k

3. Model gradient: ψk h dŷT
k

dθ h dM � θk � 1 � zin � T
dθ HT

4. Perf. gradient: GJ � k h o ψkεk { δθk

5. Hessian: HJ � k h λHJ � k � 1 { ψkψT
k

6. Regularized Hessian: HJ � k h HJ � k { δI

7. Parameters: θk g 1 h θk { H � 1
J � kGJ � k

Next sample

2.4 Simulation model

The data used for training and test set was collected during the
spring of 1998. The data collection took place with a sample
time of ten seconds, covering a total period of 485 hours. It
was decided to use the first 1 � 5 � 105 samples (417 hours) as
the training set. The measurements involved were: the valve
setting (control signal u), the steam flow (disturbance d) and
the steam temperature (output y). State estimates and prediction
errors as defined above were also used in the network.

Several different MLP configurations were attempted in
which we varied the number of states and neurons. The pro-
cess was identified as being of second order, and it was found
that the best simulation results were achieved with two linear
and three tanh-neurons in the hidden layer and two linear neu-
rons in the output layer after training for 15 epochs with the
entire training set.

0 50 100 150 200 250
450

460

470

480

T
i [

o C
]

Time [min]

Open loop simulation and actual measurements

Figure 4: Open loop MLP simulation (- -) of test set plotted
together with the corresponding actual measurements (—).

Figure 4 shows an open-loop noise-free simulation of a 1500
samples sequence. The simulated output (dashed line) is plot-
ted together with the actual measured samples (full line). The
simulation shows good agreement with the actual process, even
without any correction from the process samples (εk � 0 in the
input to the network).

3 Control

Having trained a simulation model and an observer network we
can now design the control law. Since full state information is
not available, it is chosen as

uk h o Lx̂k (13)

where L is a state feedback matrix which places the eigenvalues
of the closed loop system.

In order to include integral action in the controller we will
augment the description with an integral state. The discrete-
time equivalent of a differentiation, ∆ h 1 o q � 1, is applied to
the model, giving a differential model of the states:

∆x̂k g 1 h Φ̂k∆x̂k { Γ̂k∆uk { Γd
k ∆dk

∆yk h H∆x̂k

Then the augmented state space model is introduced in which
the original state vector is supplemented with the integral out-
put state. The augmented state vector is defined as:

xaug
k hy� ∆x̂k

yk �
After a little manipulation we arrive at

xaug
k g 1 h � Φ̂k 0

HΦ̂k I � � ∆x̂k

yk � { � Γ̂k

HΓ̂k � ∆uk { � Γ̂d
k

HΓ̂d
k � ∆dk

yk h t 0 I v xaug
k

We will denote the augmented matrices with i�s k aug. For ex-
ample, the notation Γ̂aug will be used for the augmented input
matrix including estimates.

Remark 2 In order to suppress the disturbance we include
a simple least-squares attenuation L∆d in the feedforward path
from the disturbance measurement. ]

It is seen that the characteristic polynomium for the lin-
earized, augmented closed-loop system at sample number k is
given by:

Pk i z k�h det i zI o i Φ̂aug
k o Γ̂aug

k Laug
k k�k

In other words, if the desired closed loop poles are given as
the roots of the polynomial Pd i z k , then the control law Laug � k
must be chosen so that Pk i z k?h Pd i z k . This can for instance be
achieved by solving Ackermann’s formula (see e.g. [1]).

The controller can be separated into two contributions, one
concerning the differential states and one concerning the inte-
gral state. To this is added the contribution from the external
disturbance:

∆uk h o Laug
k x̂aug

k o L∆d
k ∆dkh o L∆x

k ∆x̂k o Ly
kyk o L∆d

k ∆dk

So far, the control law has been aiming at driving the aug-
mented states to 0. Introducing the reference output rk and sub-
tracting it from the output yk yields a tracking error ek h yk o rk,
which can be driven to 0 instead. The final step in the regu-
lator design is then to integrate the differential control signal
(remembering that ∆uk h uk o uk � 1):

uk h o L∆x
k ∆x̂k o Ly

kek o L∆d
k ∆dk { uk � 1 (14)

The control loop including disturbances and observer is
shown in figure 5.
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Figure 5: Closed loop including the process model, the trained
neural net observer and the state controller.

4 Results

Simulations were run with observer networks with different
regularization factors in order to find the most suitable observer.
The best control results were achieved with a regularization fac-
tor of δ h 10 � 7. A one-hour simulation is shown in figure 6, in
which the system is supposed to follow a series of steps. A dis-
turbance sequence taken from the measured data and was used
and the noise was set to zero, εk � 0, on the input to the process
network. The true system is of course not noise free, but in or-
der to demonstrate the system behavior as clearly as possible it
was chosen not to include noise in the simulations.
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Figure 6: Simulation of control loop. Top: Output. Bottom left:
Control signal; Bottom right: Disturbance. Legend: reference
( s�s�s ), MLP-based control (—), linear observer-based control (–
–), ideal system ( o s o ).

The control law was tuned so that the system should be crit-
ically damped with a dominant double pole in z h 0 � 8. The
desired characteristic polynomial was thus chosen as Pd i z k�h
z3 o 2z2 { 1 � 28z o 0 � 256. For comparison we simulated an ideal
linear system with an identical set of poles following the same
reference sequence, and it may be seen from the figure that the
trajectories of the controlled system (full line) and the ideal sys-
tem (dashdotted line) are almost identical.

A normal state observer based on linear system identification

was also constructed and inserted in place of the MLP observer
network in the control loop, again with the same desired pole
location. The output of this control loop is also plotted in fig-
ure 6 (the dashed line). It can be seen that, even though the
performance of this system may be deemed satisfying in itself,
it is certainly not as close to the ideal trajectory as the MLP-
observer-based control system.

5 Concluding remarks

In this paper the results of training a nonlinear neural network
state space model of a pre-cooler process based on samples
taken from the actual process were presented. It was identi-
fied as a second-order model and it was found that in addi-
tion to the control signal and the steam temperature (the out-
put) it was necessary to include the steam flow through the pre-
cooler as a disturbance. Using this model as a simulation model
for the process, an observer-based pole placement controller
which took advantage of the sample-by-sample linearizations
also provided by the observer network was designed. The ob-
server network was a regularized MLP, i.e. not identical to the
process network. We compared the performance of the control
law to an ideal system and a linear observer-based pole place-
ment controller, and it was found that the MLP-observer-based
control loop performed closer to the ideal than the linear ver-
sion.

It is possible to make the algorithm presented in the paper
adaptive by allowing online training of the observer network
weights. This might indeed be a good idea in case of an actual
test on the power plant system, since it is likely that the valve
process will have changed its behaviour somewhat in the period
of time that has passed since the collection of the data.
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